Justin P. Rohrer <u>rohrej@ittc.ku.edu</u> Department of Electrical Engineering and Computer Science The University of Kansas May 2nd 2008

DESIGNING RESILIENCE IN TRANSPORT PROTOCOLS PROPOSAL FOR PH.D. DISSERTATION RESEARCH

Overview

- Introduction and Motivation
- Related Work
- Proposed Research
- Preliminary Results

Overview

- Introduction and Motivation
 - Communication Networks & Challenges
 - Related Disciplines
 - Cross-Layering
 - ResiliNets Architecture
 - PoMo Architecture
- Related Work
- Proposed Research
- Preliminary Results

Communication Networks

- Are pervasive in our society
- Used for daily communication
- Trusted with livelihoods, finances, and health
- Control essential services: power grid, EMS
- An increasingly attractive target for attacks

Challenges

- Unusual but legitimate traffic
- Wireless channel conditions
 - Bit errors
 - Intermittent & episodic connectivity
- Resource limitations of mobile nodes
- Attacks
- Misconfiguration
- Natural Faults

Disciplines

- Fault Tolerance (few, random)
- Survivability (many, intelligent)
- Dependability
 - Availability (instantaneous)
 - Reliability (long-term)
- Disruption Tolerance (interrupted connectivity)

Resilience

- Defined as: "The ability of the network to provide and maintain an acceptable level of service in the face of various faults and challenges to normal operation."
- By implication, Resilience is a superset of FT, Survivability, Dependability, and Disruption Tolerance

Scope of Resilience

Credit: [ResiliNets Group]

Cross-Layering 1

- Needed to support resilience
- Knobs influence behavior (e.g. FEC)
- Dials expose characteristics (e.g. BER)
- In band (header fields)
- Out of band (explicit signaling)
- NOT saying to throw away layering
 - Translucency principle

Cross-Layering 2

- Explicitly avoided in current Internet
- Implicitly essential to TCP
 - TCP infers congestion based on packet loss
 - RED based on this
- Implicit cross-layering insufficient
 - TCP assumes congestion for any loss event
 - Results in poor performance and inefficiency

- Architecture for designing resilient networks
 - Motivational
 - Guides design
- Four Axioms
- Six-step Strategy D²R²+DR
- 18 Principles

Four Axioms

- Inevitability of Faults
- Understand Normal Operations
- Expect Adverse Events and Conditions
- Respond to Adverse Events and Conditions
- Six-step Strategy D²R²+DR
- 18 Principles

- Four Axioms
- Six-step Strategy D²R²+DR
 - Real-time
 - Defend
 - Detect
 - Remediate
 - Recover
 - Background
 - Diagnose
 - Refine
- 18 Principles

- Four Axioms
- Six-step Strategy
- 18 Principles

Credit: [ResiliNets Group]

PoMo Architecture

- Needs/enables x-layer transport layer
- PoMo: Postmodern Internetwork Architecture
- Funded by NSF under FIND program
- Thin internetwork layer (3.5)
- Enables heterogeneous internetworking
- Uses knobs and dials for cross-layering

PoMo Model

Thesis Statement

end-to-end communication with resilience as an inherent design property is necessary to meet specified service requirements in the face of various attacks and challenges

Overview

- Introduction and Motivation
- Related Work
 - Transport Protocols
 - Disruption Tolerant Networking
- Proposed Research
- Preliminary Results

- Transport Protocols
 - 4th layer of OSI model
 - Lowest level of end-to-end communication
 - Ideal service:
 - Zero delay
 - Zero errors
 - Infinite bit rate
 - Still working on achieving ideal service

- Transport Protocols
 - General purpose
 - UDP
 - ISO-TP (TPo-TP4)
 - Application specific
 - RTP
 - NETBLT
 - TP++
 - TCP and derivatives
- Disruption Tolerant Networking

- Transport Protocols
 - Flexible and composable, e.g. TP++
 - 3 traffic classes
 - ARQ for bit errors & congestion loss
 - FEC for congestion loss
 - TCP and derivatives, e.g. SCPS-TP
 - Error notification
 - Outage notification
 - Rate based flow control

- Transport Protocols
- Disruption Tolerant Networking
 - Challenged network types
 - Terrestrial Mobile Networks
 - Exotic Media Networks: satellite, acoustic, LOS
 - MANET & Military Ad-Hoc
 - Sensor Networks
 - TCP for Space
 - Bundling protocols

- Transport Protocols
- Disruption Tolerant Networking
 - Challenged network types
 - TCP for Space
 - TCPSat
 - SCPS-TP
 - Bundling protocols
 - IPN
 - DTNRG

Problem Statement

- Resilience not explicitly addressed in TP design
- Fixed error control mechanisms
- Minimal adaptability
- Connection state too fragile
- Limited or no explicit cross-layering
- No support for multipath

Overview

- Introduction and Motivation
- Related Work
- Proposed Research
 - Architecture and Design
 - 4-phase research plan
- Preliminary Results

- Protocol Architecture and Design
 - Resilience Measures
 - Cross-Layering
 - Operational Modes (continuous or discrete)
- Research Plan
 - Resilience Principle Application
 - Algorithm Development
 - Simulation
 - Implementation

- Protocol Architecture and Design
 - Resilience Measures
 - Metrics to characterize resilience of system
 - Work in progress by Abdul Jabbar
 - Cross-Layering
 - Knobs influence operation of lower layers
 - Dials pass info to higher layers
 - Operational Modes (continuous or discrete)
 - Multidimensional map accounting for network state and application needs

Operational Modes

Requirement > Path capability Path capability > Requirement

Can trade abundant resource for scarce (e.g. sacrifice bandwidth to reduce bit errors with FEC)

Proposed Research: Error Control Mechanism Tradeoffs

- Error Detection alone
 - Trades bandwidth for error detection
 - Open Loop
- FEC
 - Trades bandwidth for error correction
 - Open loop
- ARQ
 - Trades latency for error correction
 - Closed loop

Proposed Research: Error Control

- Error Control Example
- Alternatives
 - N: none
 - O: open loop (FEC)
 - C: closed loop (ARQ)
 - S&W, GB-N, SelRep
- Location
 - □ HBH
 - □ E2E
- App requirements
 - unreliable
 - quasi-reliable
 - reliable

Credit: [James P.G. Sterbenz & David Hutchison]

Ph.D. Research Proposal - Justin P. Rohrer 2008.05.02

Proposed Research: Mechanisms

- Error Control
 - FEC and/or ARQ
 - E₂E or HBH?
 - Explicit Congestion Notification (ECN)
 - Explicit Corruption Notification
 - Recoverable
 - Unrecoverable (ELN)
 - Explicit Outage Notification (EON)
 - Explicit Delay Notification (EDN)

Proposed Research: Mechanisms

Multipath

- Present given resilient topology (≥bi-connected)
- Requires multipath routing
- What to do and where to do it?
 - Transport layer or Network layer?
- Aggregate bandwidth
- Erasure Coding
- Geographic Diversity
 - Benefits of multipath + survivability

Research Plan

- Phase 1: Resilience Principles
 - Service requirements, threat and challenge models, context aware, multilevel resilience, redundancy and diversity, resource tradeoffs
- Phase 2: Algorithm Development
 - Explore interactions and tradeoffs of mechanisms
 - ECN, ELN, EON, EDN
 - Open and closed loop flow control

Research Plan

- Phase 3: Resilient Transport Simulation
 - ns-2: open source, widely used
 - Experiment with mechanisms from phase 2
 - Challenge scenarios
 - Wired, MANET, and sensor realms
- Phase 4: Resilient Transport Implementation
 - Validate simulation models from phase 3
 - Analyze real-word effects
 - Wired, MANET, & sensor realms

Research Contributions

Theory

- Service Requirement to Path State relationship
 - How do knobs and dials relate in multidimensional space?
 - How does this relate to metrics space?
- Tradeoffs
 - Between layers
 - Within E2E layer
- Functional
 - Simulation models
 - Transport protocol implementation

Overview

- Introduction and Motivation
- Related Work
- Proposed Research
- Preliminary Results
 - Packet size adaptation
 - Cross-layer ns-2 architecture
 - PoMo E2E cross-layer framework

- Packet Size Adaptation
 - Simulation code to verify mathematical model
- Cross-layer Architecture for Simulation
 - Data structure in ns-2
- PoMo E2E Cross-Layering Framework

Packet Size Adaptation

- Selects optimal packet size given header length and BER
- 4 fixed-size curves
- Adaptive curve forms envelope of fixed-size curves

Credit: [Sarvesh Varatharajan]

- Packet Size Adaptation
- Cross-layer Architecture for Simulation
 - No packet content in ns-2 simulations
 - Need data structure to store knobs/dials
- PoMo E2E Cross-Layering Framework

PoMo E₂E Cross-Layering Framework Realms communicate via PoMo layer Provides standardized cross-layering interface

Timeline and Milestones

ID	Task Name	Start	Finish	Duration	Q2 08	Q3 08			Q4 08			Q1 09		Q2 09			
					Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May
1	Principle Application	7/2/2007	5/30/2008	48w			-		-							-	
2	Algorithm Development	5/19/2008	8/15/2008	13w													
3	Simple Simulations	6/2/2008	12/19/2008	29w													
4	Implementation	9/15/2008	3/13/2009	26w													
5	Complex Simulations	12/19/2008	3/19/2009	13w													
6	Dissertation Writing	5/5/2008	5/8/2009	53w													

Questions

