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Heterogeneity
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System Architecture

 Most Common Organization of Multiprocessors:
 GP CPU: Controller

 Special Purpose Processors: Slaves

 Overall Application Partitioning Part of Larger Picture
 Assume MPSoC Is One Application Program

 Application Broken into Threads and Tasks

 RTOS For Providing Services Inter-Processor

 We’ll Talk About This Level of Abstraction Later

 Assume A Task Per Processor
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Parallelism and Speedups

 Extensible Processors Allow Exploitation of Parallelism

 Where Does Parallelism Come From ?
 Remember Amdahls Law
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Parallelism Granularity

        Hockney & Jessope
Job Level

Between jobs
Between phases of jobs

Program Level
-Between parts of program
-Within loops

Instruction Level
-Between phases of 
instruction execution
-VLIW

Arithmetic/Bit level
-Between elements of a 
-Vector operation
-Within ALU circuits

              Gottlieb

Procedures and functions

I/O

Overlap Disk, DMA

Loops

Unrolling

Conditional Statements

Both Sides

Basic Blocks

Parallel Blocks

Circuit Levels

Arithmetic/Bit Level
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Tensilica Extensible Core Provides:

 Fusion
 Identifies Instructions that can be combined

Add R1,R2,R3

Sll R1, R1, ##4

Create: Add_sll R1, R2, R3, #4  /* 1 clock cycle instruction

 Vector/SIMD
 Best Bet for Parallelization Using this Method

 Attacks Loops:  Unroll and Create New Wider Register File + ALU’s of
Depth 2, 4, 8

 VLIW:  Called “Flix” (Flexible Length Instruction Xtensions)
 32 or 64 bit VLIW Instruction:

 Can be multicycle
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Big Win Areas

 Amdahls Law
 Look For Where Program Spends Most Time

 Straight Line Code Not Particularly Ideal

 Look For Loops

 Classic Compiler Optimizations All Come Into Play
 Code Migration

 Loop Fusion

 Loop Unrolling:
 Create Parallel Instantitions of the Loop Body

 Repackage As SIMD/Array Processing Operations
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(Imperative) Language Level Representations

Two Approaches to Getting Parallelism Out of a Single Thread

1)  Automatic Extraction 
         - Compiler. Easy for programmer, but doesn't work well

 -parallelism is generally within loops
– o superscalar’s do this automatically
– o out of order execution, completion taps instruction level parallelism
– o Studies show approximately 2-3 instructions can be executed in parallel

 2) User Directed
     -Parallel extensions to imperative languages

 - low level (parbegin/parend)
 - SIMD/Systolic approaches

Tensilica Starts With Automatic Extraction, and Allows Users to Craft
New Instructions for Extensions
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Tensilica Automatic Processor Generation
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Automatic Instruction Set Extensions
(Next Set from P. Ienne’s Slides)
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Creation of Co-Processor Instruction
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Tool Focus
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Data Flow Analysis

 Represent Program As Data Flow Graph
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Keeping Data Local
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Fast Transfer Between Memory/AFU
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Balancing I/O
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Loop Optimizations

 DEFACTO
 Design Environment for Adaptive Computing Technology

 Automated Approach For Co-Processors in FPGA’s



18

Loop Optimizations

 Data Reuse Analysis and Transforms
 Reuse Analysis: Tells us How Data Is Reused Between Loop Iterations

 Input Dependencies:  Re-use Data Input from Memory
 True Dependencies:  Re-use a Computed Value
 Output Dependencies:  Update Same Memory Location Several Times

 Reuse Transforms
 Scalar Replacement: Creates On Chip Register for Temp Storage
 Tapped Delay Lines: Shift Register Structures for Regular Accesses

 Loop Unrolling
 Expose Parallelism Within Loop Body

 Tiling
 Within Nested Loops, Can Create Spatial  “Blocks” That Can Be Unrolled
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Create Local Registers



20

Loop Unrolling

 Inner Loop Body “Expanded”
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Tiling

 Can Be Used to Create Coarse Grained Processing Tiles
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GARP

 Re-Programmable Application Specific Functional Unit (ASFU)
 Allows “different” Custom Instructions

 Uses Reconfigurable Array

 Exploits Loop Bodies For Highest Return
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GARP

 Based on Single Issue MIPS Core
 Reconfigurable Array For Exploiting Loop Level Parallelism

 Few Cycles From Registers to Array

 Direct Connection To Memory (Most Loops Operate on Memory Structures)

 Array Rapidly Reconfigurable By Having Multiple Planes

 Based on Unaltered C Code For Compatibility
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Compiler Flow

 Identify loops and map into hardware
 Accelerate From Custom Loop Bodies

 Cannot “unroll” loops due to size
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Identifying Hyperblocks

 Technique from VLIW Architectures for Multiple Paths
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Predicating Conditionals within Hyberblock
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Loop Duplication for Hardware

 Creating Hardware Copies of a Block + Software Copy
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Reference Counts
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Eliminating Operations From Hyberblocks
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Reasons for Elimination

 Hardware Infeasible Loops
 Subroutine Calls

 Stack Operations and Control Flow

 Floating Point Arithmetic
 FP Circuits Bigger Than Garp

 Operations On 64 bit Data Values
 Again too large

 Generalized Division or Remainders (Powers of 2 can shift)
 Again too large

 Compiler Built in Functions
 Can’t form circuits

 Inner Loops
 Treated As A Main Loop And Start Over
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Simulated Speedups

 Published In 1997 Paper
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Candidate Loops
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Final Performance Comparisons
Callahan’s Thesis
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Effect of Cache Depth Under Array
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Assuming Effectively Infinite Cache
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Breakdown of Execution Time in Kernel
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For Loops that Could Not Be Accelerated
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Instruction Level Parallelism Summary

 Automatic Parallelization Has Been Pursued Over 30 Years

 ISE Generation Getting Better:  Can Create Better Hardware
Support

 Performance Results Still Mixed

 Next, Look At Raising Level of Abstraction For to
Programming Model
 How to Partition Tasks/Threads

 Operating System Support

 Automatic Generation Of Hw/Sw Interfaces


