
1

Extracting Parallelism for
MPSoC’s

David Andrews
Computer Engineering Group

University of Paderborn

dandrews@ittc.ku.edu

2

Heterogeneity

3

System Architecture

 Most Common Organization of Multiprocessors:
 GP CPU: Controller

 Special Purpose Processors: Slaves

 Overall Application Partitioning Part of Larger Picture
 Assume MPSoC Is One Application Program

 Application Broken into Threads and Tasks

 RTOS For Providing Services Inter-Processor

 We’ll Talk About This Level of Abstraction Later

 Assume A Task Per Processor

4

Parallelism and Speedups

 Extensible Processors Allow Exploitation of Parallelism

 Where Does Parallelism Come From ?
 Remember Amdahls Law

5

Parallelism Granularity

 Hockney & Jessope
Job Level

Between jobs
Between phases of jobs

Program Level
-Between parts of program
-Within loops

Instruction Level
-Between phases of
instruction execution
-VLIW

Arithmetic/Bit level
-Between elements of a
-Vector operation
-Within ALU circuits

 Gottlieb

Procedures and functions

I/O

Overlap Disk, DMA

Loops

Unrolling

Conditional Statements

Both Sides

Basic Blocks

Parallel Blocks

Circuit Levels

Arithmetic/Bit Level

6

Tensilica Extensible Core Provides:

 Fusion
 Identifies Instructions that can be combined

Add R1,R2,R3

Sll R1, R1, ##4

Create: Add_sll R1, R2, R3, #4 /* 1 clock cycle instruction

 Vector/SIMD
 Best Bet for Parallelization Using this Method

 Attacks Loops: Unroll and Create New Wider Register File + ALU’s of
Depth 2, 4, 8

 VLIW: Called “Flix” (Flexible Length Instruction Xtensions)
 32 or 64 bit VLIW Instruction:

 Can be multicycle

7

Big Win Areas

 Amdahls Law
 Look For Where Program Spends Most Time

 Straight Line Code Not Particularly Ideal

 Look For Loops

 Classic Compiler Optimizations All Come Into Play
 Code Migration

 Loop Fusion

 Loop Unrolling:
 Create Parallel Instantitions of the Loop Body

 Repackage As SIMD/Array Processing Operations

8

(Imperative) Language Level Representations

Two Approaches to Getting Parallelism Out of a Single Thread

1) Automatic Extraction
 - Compiler. Easy for programmer, but doesn't work well

 -parallelism is generally within loops
– o superscalar’s do this automatically
– o out of order execution, completion taps instruction level parallelism
– o Studies show approximately 2-3 instructions can be executed in parallel

 2) User Directed
 -Parallel extensions to imperative languages

 - low level (parbegin/parend)
 - SIMD/Systolic approaches

Tensilica Starts With Automatic Extraction, and Allows Users to Craft
New Instructions for Extensions

9

Tensilica Automatic Processor Generation

10

Automatic Instruction Set Extensions
(Next Set from P. Ienne’s Slides)

11

Creation of Co-Processor Instruction

12

Tool Focus

13

Data Flow Analysis

 Represent Program As Data Flow Graph

14

Keeping Data Local

15

Fast Transfer Between Memory/AFU

16

Balancing I/O

17

Loop Optimizations

 DEFACTO
 Design Environment for Adaptive Computing Technology

 Automated Approach For Co-Processors in FPGA’s

18

Loop Optimizations

 Data Reuse Analysis and Transforms
 Reuse Analysis: Tells us How Data Is Reused Between Loop Iterations

 Input Dependencies: Re-use Data Input from Memory
 True Dependencies: Re-use a Computed Value
 Output Dependencies: Update Same Memory Location Several Times

 Reuse Transforms
 Scalar Replacement: Creates On Chip Register for Temp Storage
 Tapped Delay Lines: Shift Register Structures for Regular Accesses

 Loop Unrolling
 Expose Parallelism Within Loop Body

 Tiling
 Within Nested Loops, Can Create Spatial “Blocks” That Can Be Unrolled

19

Create Local Registers

20

Loop Unrolling

 Inner Loop Body “Expanded”

21

Tiling

 Can Be Used to Create Coarse Grained Processing Tiles

22

GARP

 Re-Programmable Application Specific Functional Unit (ASFU)
 Allows “different” Custom Instructions

 Uses Reconfigurable Array

 Exploits Loop Bodies For Highest Return

23

GARP

 Based on Single Issue MIPS Core
 Reconfigurable Array For Exploiting Loop Level Parallelism

 Few Cycles From Registers to Array

 Direct Connection To Memory (Most Loops Operate on Memory Structures)

 Array Rapidly Reconfigurable By Having Multiple Planes

 Based on Unaltered C Code For Compatibility

24

Compiler Flow

 Identify loops and map into hardware
 Accelerate From Custom Loop Bodies

 Cannot “unroll” loops due to size

25

Identifying Hyperblocks

 Technique from VLIW Architectures for Multiple Paths

26

Predicating Conditionals within Hyberblock

27

Loop Duplication for Hardware

 Creating Hardware Copies of a Block + Software Copy

28

Reference Counts

29

Eliminating Operations From Hyberblocks

30

Reasons for Elimination

 Hardware Infeasible Loops
 Subroutine Calls

 Stack Operations and Control Flow

 Floating Point Arithmetic
 FP Circuits Bigger Than Garp

 Operations On 64 bit Data Values
 Again too large

 Generalized Division or Remainders (Powers of 2 can shift)
 Again too large

 Compiler Built in Functions
 Can’t form circuits

 Inner Loops
 Treated As A Main Loop And Start Over

31

Simulated Speedups

 Published In 1997 Paper

32

Candidate Loops

33

Final Performance Comparisons
Callahan’s Thesis

34

Effect of Cache Depth Under Array

35

Assuming Effectively Infinite Cache

36

Breakdown of Execution Time in Kernel

37

For Loops that Could Not Be Accelerated

38

Instruction Level Parallelism Summary

 Automatic Parallelization Has Been Pursued Over 30 Years

 ISE Generation Getting Better: Can Create Better Hardware
Support

 Performance Results Still Mixed

 Next, Look At Raising Level of Abstraction For to
Programming Model
 How to Partition Tasks/Threads

 Operating System Support

 Automatic Generation Of Hw/Sw Interfaces

