
1

Caches for
Multiprocessor Architectures

Slides adopted from David Patterson (1998, 2001) and
David E. Culler (2001), Copyright 1998-2002, University
of California Berkeley

David Andrews
Computer Engineering Group

University of Paderborn

dandrews@ittc.ku.edu

2

First, Where Do Multiprocessors Fit ?

 SISD (Single Instruction Single Data)
 Uniprocessors

 MISD (Multiple Instruction Single Data)
 ???; multiple processors on a single data stream

 SIMD (Single Instruction Multiple Data)
 Historical Examples: Illiac-IV, CM-2

 Simple programming model
 Low overhead
 Flexibility
 All custom integrated circuits

 Recent Example: IBM Blue Gene, Cell Processor
 MIMD (Multiple Instruction Multiple Data)

 Historical Examples: Cray T3D, SGI Origin
 Flexible
 Use off-the-shelf micros

 Recent Example: Virtex 2 P30 with 2 PPC 405’s
 Within General Computing MIMD current winner:

 Clusters, x Core PC’s

3

Major MIMD Styles

• Generalized Taxonomies Along Memory Access Lines

• Centralized Shared Memory
• Uniform Memory Access or Shared Memory Processor

• Global Address Space for All. Constant Access Time from Anywhere

• Decentralized memory (memory module with CPU)
• get more memory bandwidth, lower memory latency

• Drawback: Longer communication latency

• Drawback: Software model more complex

• Multiprocessor Systems on Chip Taxonomies Include
• Variability of “Cores”

• Homogeneous: All Processors Identical

• Heterogeneous: Different Cores {CPU + DSP}

4

Heterogeneous MPSoC

SIMD Array

General Purpose CPU

5

Classic Communication Models

 Shared Memory
 Processors communicate with shared address space

 Easy on small-scale machines

 Advantages:
 Model of choice for uniprocessors, small-scale MPs

 Ease of programming

 Lower latency

 Easier to use hardware controlled caching

 Message passing
 Processors have private memories,

communicate via messages

 Advantages:
 Less hardware, easier to design

 Focuses attention on costly non-local operations

 Can support either SW model on either HW base

6

SMP—Shared Memory Organization

 Caches serve to:

 Increase bandwidth
versus bus/memory

 Reduce latency of access

 Valuable for both private
data and shared data

 I/O & Memory Global Access

7

Blob Interconnect

 Processors to Memory and I/O
 Important for Embedded Systems

 MPSoC: The “oC” on Chip Presents Interesting Studies….

Picture from Massimo Poncino’s Slides

8

SMP Interconnect

 All Memory Locations Equal Access Time so SMP =
Symmetric Multiprocessor
 Sharing Limited Bandwidth as Processors and I/O Added

 Crossbar: Eliminates Contention but Expensive

 Multistage Interconnection: Less Expensive than Crossbar with More
BW than common bus

 “Dance Hall” designs: All Processors on Left, Memories on Right

 Today, We’ll Simplify For Cache Discussions on Single Bus
Based Interconnections
 Makes Coherency Easier

 Good For Small Numbers of Processors

9

10

Classic Cache Coherency For Multiprocessors

-SMP Architectures := Snoopy Cache

-NUMA Architectures := Global Directory Cache

11

The Problem of Cache Coherency

12

What Does Coherency Mean?

 Informally:
 “Any read must return the most recent write”

 Too strict and too difficult to implement

 Better:
 “Any write must eventually be seen by a read”

 All writes are seen in proper order (“serialization”)

 Two rules to ensure this:
 “If P writes x and P1 reads it, P’s write will be seen by P1 if

the read and write are sufficiently far apart”

 Writes to a single location are serialized:
seen in one order

 Latest write will be seen

 Otherwise could see writes in illogical order
 (could see older value after a newer value)

13

Potential HW Coherency Solutions

 Snooping Solution (Snoopy Bus):
 Send all requests for data to all processors

 Processors snoop to see if they have a copy and respond accordingly

 Requires broadcast, since caching information is at processors

 Works well with bus (natural broadcast medium)

 Dominates for small scale machines (most of the market)

 Directory-Based Schemes (discuss later)
 Keep track of what is being shared in 1 centralized place (logically)

 Distributed memory => distributed directory for scalability
(avoids bottlenecks)

 Send point-to-point requests to processors via network

 Scales better than Snooping

 Actually existed BEFORE Snooping-based schemes

14

Basic Snoopy Protocols

 Write Invalidate Protocol:
 Multiple readers, single writer
 Write to shared data: an invalidate is sent to all caches which snoop and

invalidate any copies
 Read Miss:

 Write-through: memory is always up-to-date
 Write-back: snoop in caches to find most recent copy

 Write Broadcast Protocol (typically write through):
 Write to shared data: broadcast on bus, processors snoop, and update

any copies
 Read miss: memory is always up-to-date

 Write serialization: bus serializes requests!
 Bus is single point of arbitration

15

An Example Snoopy Protocol

 Invalidation protocol, write-back cache

 Each block of memory is in one state:
 Clean in all caches and up-to-date in memory (Shared)

 OR Dirty in exactly one cache (Exclusive)

 OR Not in any caches

 Each cache block is in one state (track these):
 Shared : block can be read

 OR Exclusive : cache has only copy, its writeable, and dirty

 OR Invalid : block contains no data

 Read misses: cause all caches to snoop bus

 Writes to clean line are treated as misses

16

Snoopy-Cache State Machine-I

 State machine
for CPU requests
for each
cache block Invalid

Shared
(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place Write
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

17

Snoopy-Cache State Machine-II

 State machine
for bus requests
 for each
cache block

 Appendix E? gives
details of bus
requests

Invalid
Shared

(read/only)

Exclusive
(read/write)

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write miss
for this block

Write Back
Block; (abort
memory access)

18

Place read miss
on bus

Snoopy-Cache State Machine-III

 State machine
for CPU requests
for each
cache block and
 for bus requests
 for each
cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus CPU Write

Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Write miss
for this block

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write Back
Block; (abort
memory access)

19

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
initial cache state is invalid

20

Example

P1 P2 Bus Memory
step State Addr Value State Addr ValueActionProc.Addr ValueAddrValue

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

21

Example

P1 P2 Bus Memory
step State Addr Value State Addr ValueActionProc.Addr ValueAddrValue

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

22

Example

P1 P2 Bus Memory
step State Addr Value State Addr ValueActionProc.Addr ValueAddrValue

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

23

Example

P1 P2 Bus Memory
step State Addr Value State Addr ValueActionProc.Addr ValueAddrValue

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

24

Example

P1 P2 Bus Memory
step State Addr Value State Addr ValueActionProc.Addr ValueAddrValue

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2 WrMs P2 A2 A1 10

Excl. A2 40 WrBk P2 A1 20 A1 20

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block,
but A1 != A2

25

Implementing Snooping Caches

 Multiple processors must be on bus, access to both addresses
and data

 Add a few new commands to perform coherency,
in addition to read and write

 Processors continuously snoop on address bus
 If address matches tag, either invalidate or update

 Since every bus transaction checks cache tags,
could interfere with CPU just to check:
 solution 1: duplicate set of tags for L1 caches just to allow checks in

parallel with CPU
 solution 2: L2 cache already duplicate,

provided L2 obeys inclusion with L1 cache
 block size, associativity of L2 affects L1

26

Implementing Snooping Caches

 Bus serializes writes, getting bus ensures no one else can
perform memory operation

 On a miss in a write back cache, may have the desired copy and
its dirty, so must reply

 Add extra state bit to cache to determine shared or not

 Add 4th state (MESI)

27

Larger MPs

 Separate Memory per Processor

 Local or Remote access via memory controller

 1 Cache Coherency solution: non-cached pages

 Alternative: directory per cache that tracks state of every
block in every cache
 Which caches have a copies of block, dirty vs. clean, ...

 Info per memory block vs. per cache block?
 PLUS: In memory => simpler protocol (centralized/one location)

 MINUS: In memory => directory is ƒ(memory size) vs. ƒ(cache size)

 Prevent directory as bottleneck?
distribute directory entries with memory, each keeping track
of which Procs have copies of their blocks

28

Distributed Directory MPs

29

Network Examples

 Bi-directional Ring – EX: HP V Class

 2-D Mesh and Hypercube – SGI Origin and Cray T3E

 Crossbar and Omega Network – SMPs, IBM SP3, and IP
Routers

 Clusters using ethernet, Gigabit ethernet, Myrinet, etc.

 Properties of various networks will be discussed later

30

CC-NUMA Multiprocessor: Directory Protocol

 What is Cache Coherent Non-Uniform Memory Access (CC-
NUMA)?

 Similar to Snoopy Protocol: Three states
 Shared: ≥ 1 processors have data, memory up-to-date

 Uncached (no processor hasit; not valid in any cache)

 Exclusive: 1 processor (owner) has data;
memory out-of-date

 In addition to cache state, must track which processors have
data when in the shared state (usually bit vector, 1 if
processor has copy)

 Directory Size: Big => Limited Directory Schemes (Not to be
discussed)

31

Directory Protocol
 No bus and don’t want to broadcast:

 interconnect no longer single arbitration point

 all messages have explicit responses

 Terms: typically 3 processors involved
 Local node where a request originates

 Home node where the memory location
of an address resides

 Remote node has a copy of a cache
block, whether exclusive or shared

 Example messages on next slide:
P = processor number, A = address

32

Example Directory Protocol

 Message sent to directory causes two actions:
 Update the directory

 More messages to satisfy request

 Block is in Uncached state: the copy in memory is the current
value; only possible requests for that block are:
 Read miss: requesting processor sent data from memory &requestor made

only sharing node; state of block made Shared.

 Write miss: requesting processor is sent the value & becomes the Sharing
node. The block is made Exclusive to indicate that the only valid copy is
cached. Sharers indicates the identity of the owner.

 Block is Shared => the memory value is up-to-date:
 Read miss: requesting processor is sent back the data from memory &

requesting processor is added to the sharing set.

 Write miss: requesting processor is sent the value. All processors in the set
Sharers are sent invalidate messages, & Sharers is set to identity of requesting
processor. The state of the block is made Exclusive.

33

Example Directory Protocol

 Block is Exclusive: current value of the block is held in the cache of
the processor identified by the set Sharers (the owner) => three
possible directory requests:
 Read miss: owner processor sent data fetch message, causing state of block in

owner’s cache to transition to Shared and causes owner to send data to
directory, where it is written to memory & sent back to requesting processor.
Identity of requesting processor is added to set Sharers, which still contains the
identity of the processor that was the owner (since it still has a readable copy).
State is shared.

 Data write-back: owner processor is replacing the block and hence must write it
back, making memory copy up-to-date
(the home directory essentially becomes the owner), the block is now
Uncached, and the Sharer set is empty.

 Write miss: block has a new owner. A message is sent to old owner causing
the cache to send the value of the block to the directory from which it is sent to
the requesting processor, which becomes the new owner. Sharers is set to
identity of new owner, and state of block is made Exclusive.

34

Rough Timing Analysis

35

