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Shared memory is a common interprocessor communication paradigm for single-chip multiproces-
sor platforms. Snoop-based cache coherence is a very successful technique that provides a clean
shared-memory programming abstraction in general-purpose chip multiprocessors, but there is no
consensus on its usage in resource-constrained multiprocessor systems on chips (MPSoCs) for em-
bedded applications. This work aims at providing a comparative energy and performance analysis
of cache-coherence support schemes in MPSoCs. Thanks to the use of a complete multiprocessor
simulation platform, which relies on accurate technology-homogeneous power models, we were able
to explore different cache-coherent shared-memory communication schemes for a number of cache
configurations and workloads.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Measurement techniques
General Terms: Measurement Performance
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1. INTRODUCTION

The rapid advances of silicon technology have made it possible to fabricate
hundreds of million transistors on a chip, which can be used to build small- to
medium-scale single-chip complete multiprocessors, including memories. Such
single-chip multiprocessors come in many shapes and could be broadly classified
according to the target application domain and on architectural organization.
A qualitative classification that privileges the architectural dimension is
shown in Figure 1, where some existing single-chip multiprocessors are placed

Authors’ addresses: Mirko Loghi, Universita di Verona, Verona, Italy; email: loghi@sci.univr.it;
Massimo Poncino, Politecnico di Torino, Torino, Italy. Luca Benini, Universita di Bologna, Bologna,
Italy.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.

© 2006 ACM 1539-9087/06/0500-0383 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006, Pages 383-407.



384 . M. Loghi et al.

Overall

chp A GPCMs
Performance
4
4
MPCore
SiliconHive
; _ MPSoCs
i Nomadik
A
V
Individual Core
Performance

Fig. 1. Classes of single-chip multiprocessors.

in a two-dimensional space defined as follows. The x-axis denotes the perfor-
mance of the individual computing elements (i.e., the cores), whereas the y-axis
denotes the overall chip performance, defined as the cumulative performance
of the individual cores.

We notice that, although qualitative, the plot exhibits two rough regions de-
fined by quite well-defined architectural characteristics. A first region, in which
overall chip performance is obtained as a result of using few high-performance
cores (a small slope of the trend line) and a second one in which overall chip per-
formance (usually much smaller than for architectures belonging to the other
region)is obtained as a result of using possibly large numbers of low- to medium-
performance cores (a high slope of the trend line).

Interestingly, these areas also correspond to chip multiprocessors with dif-
ferent application targets; in order to distinguish between them, we use specific
names for these two categories. We call the former class general-purpose chip
maultiprocessors (GPCMs), which integrate a small number of advanced proces-
sor cores (e.g., Itanium 2, UltraSPARC) and large caches in a tightly connected
cluster, and that typically target the high-end server market and are often used
as building blocks for large-scale supercomputers [McNairy and Bhatia 2005;
Geppert 2005; Kalla et al. 2004; Keltcher et al. 2003].

In contrast, we define the other class multiprocessor systems-on-chip
(MPSoC), which contain simpler cores and many application-specific hetero-
geneous coprocessors, embedded memories and peripherals, and are targeted
for embedded applications (multimedia, video, graphics) in tightly cost- and
power-constrained markets (e.g., smart phones, home entertainment centers)
[ARM11 MPCore ; SiliconHive; Cumming 2003; Richardson 2002; Ackland et al.
2000; Philips Semiconductor; Grammatikakis et al. 2003].

The focus of this paper is the study of power—performance tradeoffs in sup-
porting shared-memory programming models in MPSoCs. Needless to say,
power consumption is also a concern in GPCMs. In the case of GPCMs, however,
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fully hardware-supported cache coherence is an undisputed requirement, be-
cause it makes much easier to support general purpose application workloads.
Recent papers by Ekman et al. [2002a, 2002b] have studied the power consump-
tion of snoop-based cache coherence using a full-system simulation approach
targeted to GCMPs.

The picture is much less clear in MPSoCs; although some MPSoCs explicitly
support cache coherence in HW [e.g., ARM11 MPCore ; Ackland et al. 2000],
other devices on the market rely on noncache-coherent architectures [e.g., Cum-
ming 2003]. This is motivated by the fact that embedded applications are usu-
ally carefully tuned to the target hardware platform and interprocessor com-
munication is often performed by explicitly managing shared-memory areas,
without much hardware support for a full shared-memory abstraction. Clearly,
the ease of programming in a fully cache coherent memory space could simplify
embedded application development, but designers would reluctantly accept this
approach if this should affect the energy efficiency of the architecture.

Our work sheds some light on this open issue. We set up a complete and
accurate environment for exploring the energy efficiency of cache coherence in
a MPSoC context, using cycle-accurate simulation and power models that are
technology-homogeneous (i.e., all obtained from characterization in the same
13um technology). We compared three alternative approaches to cachecoher-
ence: in the first one (hardware-based), cache coherence is imposed by a specific
device implementing a snoopy protocol; in the second one (noncoherent), coher-
ence is enforced by preventing the caching of shared data. In the third scheme
(OS-based), the burden of coherence is left to the operating systems IPC prim-
itives (that are, in our platform, based on message passing).

Our analysis allows us to derive some interesting and nontrivial conclusions.
First, results show that an OS-based coherence solution is extremely inefficient
both power- and performance-wise (up to 7x), independently of the benchmark
and of the cache configuration. Second, we show that cache coherence is not
always convenient in terms of either performance and energy; this strongly de-
pends on hardware features, such as cache size, as well as on the characteristics
of the application such as the access patterns for shared variables. The latter,
in particular, allows to define some high-level guidelines for writing embedded
software for cache-coherent MPSoCs.

This paper is organized as follows. Section 2 surveys previous works on cache
coherence in GCMPs and MPSoCs. Section 3 provides a description of the sim-
ulation platform used in this work, its implementation, as well as its software
architecture. Section 4 describes the coherence schemes used in our exploration
and section 5 describes and analyzes simulation results. Finally, section 6 sum-
marizes the work and draws a few conclusions.

2. BACKGROUND AND PREVIOUS WORK

The problem of cache coherence has been thoroughly studied by researchers
and a vast literature on the subject is available. Broadly speaking, approaches
for solving the cache-coherence problem in multiprocessor systems fall into
two major classes: hardware-based and software-based approaches. The former
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impose cache coherence by adding suitable hardware which guarantees co-
herence of cached data, whereas, the latter impose coherence by limiting the
caching of some shared data to when it is safe to do it; this can be done by the pro-
grammer, the compiler, or the operating system. For a survey of hardware-based
cache-coherence solutions the reader is referred to Stenstrom [1990], Tomasevic
and Milutinovic[1994], and Culler et al. [1997]; software-based cache-coherence
solutions are reviewed in Tartalja and Milutinovic [1997].

Hardware-based cache coherence solutions hereafter called cache-coherence
protocols can be further classified according to two orthogonal dimensions
[Stenstrom 1990]:

1. The type of interconnect of the multiprocessor architecture. When processors
are connected through a shared medium (such as a bus), protocols can use
broadcasting to enforce coherence. These protocols are called snoopy proto-
cols. These schemes apply to small-scale bus-based multiprocessors, because
of the limited scalability of buses. In absence of a shared medium as inter-
connect (e.g., if a crossbar connection is used), snoopy protocols are replaced
by directory-based protocols (which are outside the scope of this paper).

2. The type of cache-coherence policy. There are essentially two options: a write-
tnvalidate and a write-update policy. In the former scheme, whenever any
cache line L is written, the coherence protocol invalidates all copies of L in
other caches; in the latter one, the protocol updates those lines with the new
value, which is being written.

Invalidation-based solutions are more common in coherence protocols be-
cause they are easier to implement in hardware; they are also more effi-
cient than update-based one for large-cache line sizes, since updates require
multiple bus transfers. Update-based protocols become more efficient when
accessing heavily contended lines, since subsequent accesses to those lines
will result in a cache hit, thanks to the update.

Multiprocessor architectures (and, hence, cache coherence) have been histor-
ically designed with performance in mind. Therefore, the impact of coherence
schemes on energy has not been considered until the tight energy constraints
of single-chip multiprocessors made the problem relevant. Early work on this
topic include the Jetty scheme [Moshovos et al. 2001], where a small structure
(Jetty) is attached to each cache so as to filter out useless snoop accesses. In-
stead of doing a tag-lookup directly, the Jetty is checked first; if no copies of
data exist, a cache access is avoided, thus achieving significant energy savings.
Another approach is serial snooping [Saldanha and Lipasti 2003], based on the
assumption that if a miss occurs in one cache, it is possible to find the block
in another cache without having to check all the other caches. Both schemes
have been devised for multichip SMPs; they have been evaluated on GPCMs in
Ekman et al. [2002a], where it was shown that these solutions are quite ineffec-
tive. The same authors have also proposed an energy-efficient cache-coherence
scheme for virtual caches in GPCMs [Ekman et al. 2002b].

None of these approaches is explicitly meant for MPSoCs, for which much
tighter energy and area constraints do exist. As a matter of fact, all these
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Fig. 2. Hardware architecture.

schemes require quite high computational and/or hardware overhead and as-
sume nonrealistic software architectures. For example, in Ekman et al. [2002a,
2002b], no operating system is assumed to be executing in the system.

In this work, we propose the first energy/performance analysis in MPSoCs,
that includes an embedded operating system. The result is a comparison of basic
hardware-based coherence schemes, with minimal impact on the architecture,
with respect to schemes imposed at the software level.

3. THE MULTIPROCESSOR PLATFORM

Figure 2 shows the architectural template of the multiprocessor simulation
platform used in this work, called MPARM [Loghi et al. 2004]. It consists of (i)
a configurable number of 32-bit ARM processors, (ii) their private memories, (iii)
a shared-memory, (iv) a hardware interrupt module, (v) a hardware semaphore
module, and (vi) the interconnect.

The processor cores are modeled by means of an adapted version of a GPL-
licensed instruction-set-simulator (ISS) called SWARM [Software ARM ], writ-
ten in C++ and embedded into a SystemC wrapper. Each ISS contains his own
cache, possibly split in instruction and data cache. Memories and all other de-
vices are implemented in SystemC in a straightforward fashion. The semaphore
module and the interrupt device are used to handle the synchronization among
the cores. The former provides a test-and-set operation to the software, while
the latter allows a processor to send an interrupt request to another core. Both
these specialized hardware devices are mapped into the core’s address space. To
send an interrupt to a processor, an application writes a word into a specific
location; to do busy waiting on a semaphore, it suffices to read from the proper
address and loop until the operation return the correct value (namely, 0). The
platform is entirely described in SystemC, accurate at the signal level, except
the ISS which performs cycle-accurate simulations of the cores; the resulting
simulations are signal- and cycle-accurate, respectively.
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The platform is configurable and it allows to specify several parameters:

e The type of interconnect. The 32-bit interconnection system can be an AMBA
AHB bus [AMBA Home Page] or a ST-Bus (a proprietary bus by STMicroelec-
tronics). In addition, the topology of the ST-bus can be a shared bus configu-
ration, a full crossbar configuration, or
an intermediate partial crossbar topology. In this work, we focus on an ST-bus
shared bus configuration.

e The number of processing elements.

e The cache parameters. In particular, we can specify the organization (split
or unified), the type (direct-mapped, fully-associative or set-associative), the
size, and the line size.

e The memory parameters. In particular, we can specify the size and the latency.
This also applies to the dedicated hardware (which is viewed as a memory)
and the size of the memories.

3.1 External Memory

At the board level, MPSoC platforms always interact with external memories
such as DRAMs and NV-RAMs (FLASH, EPROM, etc.). However, access to these
memories is generally performed through explicit data transfers using dedi-
cated memory controllers [Carter et al. 1999; Hong et al. 1999; Gries 2000]. This
is in sharp contrast with large-scale general-purpose multiprocessors, where
the complete memory hierarchy is managed in a uniform way, though virtual
memory abstraction.

For this reason, in our analysis, we focus on on-chip memory. We assume that
off-chip memory accesses are explicitly managed through DMA-based external
memory controllers: management of off-chip memory in embedded applications
is outside the scope of this work (the interested reader is referred to the rel-
evant literature [Gries 2000; Marchal et al. 2003]). In the following sections,
we assume that the working set for the applications is transferred on-chip us-
ing background DMA transfers and that the data is always available on-chip
when needed by the application. The interaction between off-chip and on-chip
memory traffic is a topic for future research.

3.2 Software Implementation

Figure 3 shows the software architecture of MPARM. Names in parentheses
inside the boxes denote the names of the corresponding C++ class.

The ISS is modeled as a C++ class (CArmProc) and is embedded into a
SystemC wrapper (armsystem). The wrapper allows the usage of the ISS
in a SystemC environ, while the bus interface (implemented in the class
STBus_initiator) is in charge to translate the ARM requests toward the bus,
to bus-specific protocol requests.

In addition, the core contains its cache as a data member of type CCache.
This is a base class from which other classes that implement specific cache
types can be implemented: the fully associative (CAssociativeCache), the direct-
mapped (CDirectCache), and set-associative cache (CSetAssociativeCache). The
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Fig. 3. Software implementation of the platform.

base class provides a common interface to access to the data from the code
executed by the ISS.

The implementation of memories and of dedicated hardware is straightfor-
ward, because of their simple functional behavior. Memories are simply a class
(Memory_T3) which embeds an array of data; the only potential difficulty lies in
the interface toward the bus. The memory, in fact, must be able to understand
the bus protocol and communicate accordingly. Dedicated hardware modules
(Semaphore_T3 or Interrupt_T3) can be thought of as a variant of memories.
They also receive read or write requests and must act accordingly, depending
on their specific operations. The overall platform is instantiated in a dynamical
way at the very beginning of the simulation in the sc_main method.

Besides the classes, which implements hardware devices, we developed some
other class to perform data collection for performance and power consump-
tion. The main one is the Statistics class, which contains several methods
to handle and record events. For instance, the inspectMemoryAccess and the
InspectCacheAccess are called when a memory or a cache module is activated,

respectively.

3.3 Power Models

Concerning power analysis, the platform provides accurate power models as-
sociated with each component. All models are cycle-accurate and have been
characterized on a 0.13-um technology by STMicroelectronics and validated
on silicon implementations of the various components. Using the models, the
platform can provide the energy spent by any of the different components on
a cycle-by-cycle basis. The models are functions, which compute the energy
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spent by the correspondent device, using information on the device’s internal
state.

For the cores we have used a instruction-based power model (see [Benini et al.
2001] for details). We distinguish between a RUNNING and an IDLE state, with
distinct values of power consumption. An ARM core can be in IDLE state when
its internal pipeline is stalled, for data or instruction dependency, or when it
is waiting for some data from the bus. In both cases, the core is consuming a
smaller (yet nonzero) amount of energy with respect to the RUNNING state.
Power consumption figures have been obtained from an implementation of an
ARMT7 on a 0.13-um technology by STMicroelectronics (0.055 mW/MHz for the
RUNNING state, and 0.036 mW/MHz for the IDLE state).

For the memories (both caches and private memories), we have used an
analytical model [see Chinosi et al. 1998], derived from interpolation of data
extracted from a memory generator by STMicroelectronics for the same 0.13-
um technology. The model is parameterized with respect to the memory size (in
32-bit words), and has been derived by least-mean square regression of a set of
energy values obtained with the memory generator for different memory sizes.
We explicitly distinguish between read and write accesses (for which there are
two different power models).

The caches are regarded as a special type of memories consisting of two
distinct cell arrays, the data and the tag memory. Given the fixed size of the
memory word (32 bits), the cache parameters automatically define the size of
the tag array(s) and the size of the data array(s). For instance, a 4 KB unified,
two-way associative cache with 16-bytes lines will have two 24-bit tag arrays
and two 128-bit arrays.

To accurately model cache power, cache accesses are decomposed into differ-
ent access subtypes. For instance, writing a word in a cache consists of (i) a tag
memory access and (ii) a data memory access. In addition, if the cache is n-way
associative, only the bitlines corresponding to the desired way are activated.
This is different, for instance, from the case of a cache refill, in which an entire
line is written into the cache.

For this reason, we have defined a richer set of cache access modes, with
different power models: READDATA and WRITELINE when a whole line of the
data memory is read or written, READTAG and WRITETAG when the tag field
is read or written and WRITEWORD when a single word into a data memory
line is written. Therefore, the power spent by a cache operation depends on
the operation type, on the cache type (fully associative, direct-mapped, or set-
associative), and on the line size, for the last parameter affects the size of the
tag-memory.

The power model for the ST-bus is relative to the same 0.13-um technology
and has been provided by STMicroelectronics. It computes the power spent
during a clock cycle using the number of cells, which are in transit on the
bus. This datum is available thanks to the signal accuracy of the simulation,
which allows to know how many devices are transmitting on the bus by simply
analyzing the request and grant signals.

The mechanism used to invoke the various power models is described in
Figure 4.
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When a given module is activated, the related power module function is
invoked with the actual parameters carrying information on the device state.
For the ST-bus power model, this data is the number of cell in transit on the
bus, while for memories and caches it is the memory size and the access type.
The power module function returns to the caller (the module implementation)
the amount of energy spent for the current operation. The module moves this
value to the data collection routines, which are in charge to gather and record
information about performance and energy of the system. For the ARM core,
the information flow is different. The ISS, in fact, does not run when the core is
stalled waiting for a bus response. Since the core is consuming energy also when
idle, to collect this energy the power model is invoked from the data collector
routine, which is activated at each cycle, and keeps track of the state of the
core.

3.4 Cache-Coherence Support

The base MPARM architecture does not support cache-coherence, in the sense
that no hardware support is used to enforce it. We have enhanced the platform
by adding hardware coherence support based on various policies, categorized
according to two dimensions: cache-write policy (write-through vs. write-back)
and cache-coherence policy (write-invalidate vs. write-update).

For the WT write policy we have implemented two simple protocols: write-
through invalidate (WTI), and write-through update (WTU). Using these pro-
tocols, whenever a processor writes a shared variable into its cache, it also
performs the write into the RAM. The cores that have that variable into their
caches then perform the appropriate operation (invalidation for WTI, or update
for WTU).

Concerning the WB policy, we have implemented the well-known MESI pro-
tocol and the Berkeley (BER) protocol. These protocols assume four possible
states for a cache line: Modified, Exclusive, Shared, and Invalid for the MESI,
and Invalid, Valid, Shared-dirty, and Dirty for the BER. Cache tags must thus
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addr_in sic opcpde  req
3. SnoopDeviceInvalidate (addr_in, src,opcode, req)
{
if ((reqgq==1) && /* a request */

(opc[3:0]==2) && /* a write */
clk (sxc != 0) && /* by another core */
Snoop Invalidate ((address>=LOW) && (address<HIGH))) {
. invalidate = 1;
Device addr_out = addr_in;
} else {

invalidate = 0;

address_out = 0;
}

addr_out invalidate
(@
addr_in data_in Src OpCOde req SnoopDeviceUpdate (addr_in,data_in, src,opcode, req)
{
3 3 8 if ((reg==1) && /* a request */
(opc[3:0]==2) && /* a write */
(sxc != 0) && /* by another core */
clk ((address>=LOW) && (address<HIGH))) {
—— update = 1;
Snoop Update addr_out = addr_in;
. data_out = data_in;
Device } else {
update = 0;
address_out = 0;
32 3 data_out = 0;
}
}

addr_out data_out update

(b)

Fig. 5. Operations of the WT snoop device for the invalidate (a) and update (b) policies.

be enlarged with two additional bits with respect to the baseline (without cache
coherence) cache architecture.

Besides multiple states of a line, WB-based protocols are more complicated
from the control point of view. First, they require the inspection of the RAM
reads, besides writes. In fact, each core must know if a shared variable contained
in its cache is also present in some other cache. If a processor wants to write
a variable owned by other cores, it must signal this fact to them. Second, if a
core modifies a variable into its cache and it does not update the RAM, since
the policy is WB, it must provide the new value of such variable in response to
future requests of other processors.

3.4.1 Hardware Implementation. The hardware snoop devices are in
charge to enforce the cache coherence protocols. The snoop devices sample the
bus signals to detect the transaction on the bus, its relevant data and the core
involved.

Figure 5 shows the interface and the basic behavior of the snoop devices
developed for WT policies. For WT-based policies the significative operations
are only the write ones: when a write request on the shared memory is coming
from another processor (detected from the observation of the corresponding bus
signals), the corresponding action is performed, i.e., invalidation for the WTI
policy, rewriting of the data (update) for the WTU one. Write operations are
performed in two steps. The first one is performed by the core, which asserts
the signals on the bus, while the second one is performed by the target memory,
which sends its acknowledge. The write ends when the second step is complete
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Fig. 6. The WB snoop device.

and when it is the right time, for the snoop device, to interact with the cache. Of
course, the device must ignore writes issued by its core. Notice that the update
device is slightly more complex than the invalidate one. It features extra I/0
interface for the data, since in this case we need to write a value to the updated
cache location.

For WB-based policies the snoop device’s behavior is more complex (Figure 6
shows the device’s interface). The crucial operations to detect are both the reads
and the writes. Furthermore, the snoop device must interact as with the cache
as well with the processor core. Due to the cache coherence protocols for the WB
policy, some read operations may be aborted, because the data in memory are
not updated. The updated data are actually owned by another core, and reside
in its cache. In such a situation the snoop device must signal to the core that
issued the read that the read operation must be interrupted. Next, the snoop
device must also force the owning core to put the data on the bus, actually
performing a write in memory. Then the I/O interface of the snoop device for
the WB case, holds an output port to carry the commands to the core.

Of course, even in the WB case, all the operations are performed in two
steps. A write operation consists of a request and of an acknowledge, while a
read operation consists of a request and of a response which carries the data.
The snoop devices usually interact with the caches and with the cores at the
end of the second phase, but sometimes it can operate at the end of the first
phase (as, for example, when a read must be interrupted).

In our processor node, synchronization between the core and the snoop de-
vice is handled using a mutual exclusion register, which allows the core, or
alternatively, the snoop device, to lock access to the cache memory. Hence, we
can model accurately the performance penalty of contention for cache access.

3.5 The Operating System

A port of a real-time operative system called RTEMS (real-time executive for
multiprocessor systems [RTEMS Home Page ]) has been realized for this plat-
form. User applications do link the RTEMS libraries to gain access to the func-
tionality of the embedded system, in the form of a set of system calls.
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RTEMS is a lightweight and flexible OS for embedded systems, it offering
good support for multiprocessing and providing native calls for communication
and synchronization in such multiprocessor environments. Its targets are
homogeneous and heterogeneous multiprocessing systems, for which it pro-
vides multitasking capabilities, flexible scheduling, and a high degree of user
configurability.

Interprocess and interthread communication in RTEMS rely on message
queues. A thread, which need to communicate with another thread, must open
a message queue, which can be its own (local queue) or owned by another thread
(remote queue). Both tasks involved in the communication must open the same
queue, identified by a global ID and one of them will own the queue. The trans-
mitter thread then uses the rtems_message_queue_send to put data into the queue,
while the other uses rtems message_queue_receive to retrieve them. The behavior
of these two system primitives depends on the owner of the queue. It is differ-
ent, in fact, to use a rtems_message_queue_send Or a rtems_message_queue_receive On
a remote queue with respect to a local queue. However, the differences in the
queue handling are managed from RTEMS and are totally transparent to the
user.

4. ENERGY IMPACT OF CACHE COHERENCE

To assess the energy/performance efficiency of cache-coherence in MPSoCs, we
compared three different schemes for enforcing cache-coherence, each one cor-
responding to a different programming model, i.e., the way coherence is made
available to the programmer. It is worth emphasizing that all the three models
assume strict memory consistency [Culler et al. 1997].

Under this consistency model, any read to a memory location X returns the
value stored by the most recent write operation to X . This is equivalent to the
semantics of uniprocessors and it implicitly assumes the existence of absolute
global time so that the notion of “most recent” is not ambiguous.

The choice of strict consistency is dictated by the fact that is simple; although
more relaxed consistency models are known to provide substantial performance
improvements, for MPSoCs simplicity is more important and strict consistency
is typically the most appropriate choice [Hill 1998].

The following subsections describe these three schemes. For each scheme, its
corresponding programming model will be illustrated through a simple exam-
ple, namely, a one-item producer—consumer application.

4.1 Hardware-Based Coherence

Under this model, cache-coherence is imposed by the snoop devices attached
to the cores and their caches. This scheme implies a program semantics
similar to that of an uniprocessor context; shared data can be cached be-
cause caches are guaranteed to be coherent. However, the programmer must
explicitly deal with synchronization (e.g., for mutual exclusion) of shared
data.

Figure 7 shows a typical textbook pseudocode for our working example. The
use of the shared variable value is guaranteed to be coherent. However, the
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shared int value;
shared sem mutex = 1, filledslots = 0, emptyslots = 1;

void producer(void) void consumer (void)

{ while (TRUE) { while (TRUE) {
Wait (emptyslots); Wa{t (filledslots);
Wait (mutex); Wait (mutex),
value = Produce (); Consume (value);
Signal (mutex); 5/_g nal (mutex);
Signal (filledslots); Slgnal (emptysiots);

} , 7
}

Fig. 7. Producer-consumer pseudocode with one-item buffer.

programmer must use a synchronization variable (a semaphore, in the example)
to regulate access to the data.

4.2 Software-Based Coherence

The second coherence scheme is straightforward: shared data are not cached.
Although this solution may appear trivial, it is the basis of typical software-
based schemes. More advanced schemes belonging to this class require compiler
support to perform accurate analysis, which allows caching of some shared data
when it is safe to do it [Tartalja and Milutinovic 1997]. In our example, the code
differs only marginally from the one in Figure 7, namely, the shared keyword
used on a variable automatically implies the fact that it cannot be cached. It
will be allocated in a noncacheable memory segment at program loading time.

4.3 OS-Based Coherence

The third scheme leaves to the OS the task of guaranteeing coherence, through
its IPC abstraction offered by its API. Specifically, RTEMS offers a commu-
nication infrastructure based on message queues [RTEMS Home Page ], that
are shared objects implemented as a pool of buffers, called packets. In order
to communicate with each other, remote processes obtain packet buffers using
the the global identifier of the queue. Synchronized accesses to these buffers
are realized by means of locks, which can be thought of as an equivalent of a
hardware test-and-set primitive, implemented by polling a given location of the
shared-memory.

From the programming model point of view, not just coherence, but even the
notion of shared data is hidden by the OS primitives. The producer—consumer
example becomes then as shown in Figure 8, where send and receive denote
the generic primitives for communication between remote processes. In the
example, communication is established by explicitly specifying the peer process
involved in the communication.

The two versions of software cache-coherence for WT and WB will be denoted
by WTS (software write-through) and WBS (software write-back), for the sake
of conciseness.
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void producer(void) void consumer (void)
{ {
message m; int item;
int item; message m;
while (TRUE) { while (TRUE) {
item = Produce() receive(producer, &m);
build_message(&m, item); item=extract_item(&m);
send(consumer, &m); consume_item(item);
b ¥
) b

Fig. 8. Producer—consumer pseudocode with one-element buffer.

5. EXPERIMENTAL RESULTS

5.1 Benchmark Description

In order to accurately compare the schemes described in the previous section, we
have chosen a set of parallel programs, which exhibit different access patterns
to the shared-memory. The synchronization among processes relies on OS prim-
itives, for the applications that use the OS and on explicit manipulation of the
hardware semaphore module for the others. In particular, the synchronization
is always based on the test-and-set hardware feature. Addresses corresponding
to semaphores are never cached, because it is not possible to perform a test-
and-set access on a cache memory. The benchmarks are split into two sets. The
first set includes two synthetic parametric benchmarks:

1. A producer-consumer application (PCx,y,z). The application is parameter-

ized with respect to the number of producers x, consumers y, and the size of
the FIFO queue z. All the producers write their data in a queue and all the
consumers read from the same queue. When the queue is full, the produc-
ers busy-stall polling the semaphore, while consumers busy-stall when the
queue is empty. It is not relevant which consumer gets the data written by
a producer, so the only synchronization point is related to the queue access.
Each process performs a fixed number (N, set at 1000 in our experiments) of
operations (reads or writes to the queue).

2. An application implementing the readers—writers problem (RWx,y,z,w). The

meaning of x, y, and z is the same as for the PC application, while w denotes
the relative speed of the readers with respect to the writers. The writers
and the readers use the same shared object for data exchange. Here the aim
of synchronization is to avoid multiple, simultaneous write accesses, while
simultaneous reads must be allowed. Furthermore, no reads are allowed
during a write and each writer must have exclusive access to the shared data.
Unlike the previous case, multiple writes before one read and multiple reads
before one write are possible In this case, each process (reader or writer) also
accesses the same number of times N the shared object. Varying the relative
speed of the processes will change the order of the memory accesses, but not
their total number.
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Fig. 9. Relative energy and performance for the producer—consumer application.

The second set of benchmarks consists of a set of small kernels implementing
well-defined functionalities:

1. Aparallel matrix multiplication (MM). Each processor uses the entire source
matrices and produces a slice of the result matrix. This program is written so
as to maximize the sharing of the read-only variables (the source matrices)
and to minimize the sharing of the variables that are written.

2. A parallel FFT.
3. A parallel LU matrix decomposition (LU).

The last two application are taken from the SPLASH-2 benchmark suite [Singh
et al. 1992].

5.2 Analysis

We have compared the cache-coherency schemes using power P, execution time
T (in cycles), energy E = PT, and the energy-delay product EDP = ET = PT?.
To allow an uniform comparison, all results are normalized with respect to the
case of SW cache-coherence and WT policy.

As a first experiment, we compared the various coherence schemes on the
producer—consumer application (PC2,2,16). Figure 9 shows performance, en-
ergy, and power results of the various coherence schemes. For WT policy,
WTI (WTU) denotes hardware-based coherence using invalidate (update) pro-
tocol and WT'S denotes software-based coherence. For WB policy, WBS denotes
software-based coherence, while MESI and BER denote the corresponding pro-
tocol. Last, OS denotes coherence imposed by OS communication primitives.

The most striking results emerging from this comparison is the intrinsic in-
efficiency of OS-based coherence. The results show that in MPSoCs the price
paid in terms of performance and energy for an OS-based user-friendly pro-
gramming model is very high. The existence of some overhead because of the
OSis generally to be expected, but, in this case, it appears to be quite significant.

There are two main sources of this OS overhead. The first one is of gen-
eral nature, and has to do with to the abstraction that the OS provides to the
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programmer; since the same code must be used for various operating conditions
(architectures and applications), more instructions are required to perform a
message exchange. In other terms, abstraction implies generality and, as such,
it cannot exploit the knowledge of underlying hardware.

The second source of overhead is because of the flow of data across the com-
munication infrastructure. The OS abstracts the notion of shared data and it
provides, in our case, a message-passing environment to the programmer. In
such a paradigm, all shared data are actually exchanged from a core to an-
other one through the interconnect. Conversely, in HW- and SW-based coher-
ence schemes, only data related to the shared variables that are really modified
have to be transferred, generating traffic on the bus. Although the overhead be-
cause of the OS tends to decrease for increasing granularity of the exchanged
data (unlike the case of non-OS-based communication), data granularity is not
always an independent variable for the software designer, who has to take into
account the characteristics of the program and their constraints (e.g., as in
multimedia application).

As a conclusion, the choice of the OS clearly impacts the results of
Figure 9. However, RTEMS implements a communication infrastructure whose
quality is comparable to real-life OSs for MPSoCs. Therefore, even with some
architecture-specific optimization of the OS message-passing facility can im-
prove the results, it is unlikely that the 7x overhead can be decreased to a
level that makes OS scheme competitive with the other solutions. Therefore,
results relative to OS-based coherence will not be considered further in our
analysis.

5.2.1 Synthetic Benchmarks. Results for the producer—consumer bench-
mark are shown in Figure 10, that reports performance, power, energy, and
EDP figures from top to bottom, left to right. Each plot shows six bars. The
leftmost three are relative to WT policies (WTS, WTI, WTU, from left to right),
whereas the rightmost three are relative to WB policies (BER, MESI, WBS,
from right to left).

The experiments show limited sensitivity to the parameters (# of producers—
consumers and buffer size); this is due to the nature of the application; in fact,
the average speed for each process is forced to be the same. If the consumer is
faster than the producer, the buffer will tend to empty and the consumer will
wait for the producer. Conversely, if the producer is faster, the buffer will tend
to fill up and the producer will have to wait for the consumer.

In case of speed mismatches, there are substantial differences on the access
patterns only for the hardware lock and, because of the non-cacheability of its
address space, these variations have the same impact on system performance
and power consumption for the cache-coherent solutions, as well as for the
noncoherent one.

Concerning the effectiveness of CC policies, we observed that for the WT
policies, the WTU solution performs slightly faster than the SW one, but it
also has larger energy consumption. The WTI protocol shows higher energy
consumption than the other two and has an execution time comparable to WTS,
but always worse than the WTU one.
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Fig. 10. Relative performance, power, energy and EDP for the PC application for various queue
lengths.

The WB policy shows consistently better results with respect to the WT
policy. The cache policy, in fact, impacts not only the shared data, but also
the private variables. Moreover, the impact on the private data can be more
relevant, because we never need to write a dirty cache line in memory only
because another core has to update its cache. Thus, using the WB policy on
private variables reduces the traffic on the bus and the number of accesses in
RAM. There is, as a drawback, the need of a larger tag memory in the cache, to
keep track of the status of each cache line (clean or dirty) and, then, each cache
access will have a higher energy cost. The need for a larger tag is even stronger
when a cache-coherent protocol is used. In such a case, a cache line can assume
one of four states (modified, exclusive, shared, or invalid in the MESI protocol).
Hence, two additional bits are needed into the tag, and this can reduce the
effectiveness of these protocols.

For the PC application, both performance improvements and energy savings
are limited and they are more related to the cache policy than to the coherence
scheme. The three cases (WBS, MESI, and BER) shows, in fact, very simi-
lar results, as for the execution time, as well for the energy dissipation. More
generally, all six policies show marginal differences in all metrics: the best im-
provements are for EDP, that are in the order of 7%.

The second set of experiments refers to the RW application, relative to the
case of three readers and one writer (similar results have been obtained for
other numbers of readers and writers).
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We have run three sets of simulations corresponding to the variation of three
different parameters: two relative to the application (buffer size and relative
speed) and the other relative to the platform (cache size). This benchmark is
more interesting than the producers—consumer; here, changing the application
parameters (and, in particular, the speed ratio) significantly changes the access
pattern to the shared-memory and thus the behavior of the coherence scheme
involved.

In simple terms, hardware cache-coherence makes it possible to cache the
shared variables. Consequently, the power consumption breakdown shows an
increased impact of cache power with respect to bus and shared-memory. There-
fore, there are access sequences that benefit from this fact, but also sequences
that are penalized.

For instance, consider a WTU scheme and a sequence of consecutive writes in
a shared-memory location; each write will cause a sequence of update command
on some data cache. The only useful update command, however, is the one which
occurs just before a read access on the cache, because the values carried by the
other ones are lost. For this access pattern, the WTU scheme is thus quite
inefficient.

Conversely, in a sequence of accesses where each write is followed by a read,
WTU will be effective, since the update command issued during the write access
will load the cache with the data and the following read access will not need a
memory and bus access. Note that a useless update command is negative for
both power and performance; in fact, since the core cannot access the cache
when it is used by the snoop device, some cycles are wasted.

Figure 11 shows performance, power, energy, and EDP, for the RW applica-
tion varying the speed ratios between the readers and the writers.

The speed ratio directly impacts the access patterns on shared-memory.
When the readers and the writers run at the same speed, the cache-coherent
schemes present significant advantages (about 20% performance and energy
improvement, and 30-35% EDP reduction); in this situation, read and write
accesses are, in fact, always interlaced and the accesses to the bus and to RAM
are substantially reduced. When readers are slower than writers (speed ratio
equal to 0.1), there are many consecutive writes on the shared buffer between
two read accesses; this behavior penalizes the cache-coherent architecture. The
same holds when readers are faster than writers (speed ratio equal to 10); the
readers end their work very early, hence the last portion of the buffer access is
composed of only writes because of the writers, which are still running. Still, in
both cases, some improvement is observable.

As for the PC application, for the RW the WB policy shows its benefits. The
WBS policy usually overcomes the gain because of cache-coherence protocols
applied to the WT policy and there is only a case where the WTU policy is
slightly faster than the WBS one. With the WB policy, the cache coherence also
does not seem to provide remarkable advantages with respect to the SWB case.

In this application the resulting access patterns to the shared object involved
in the communication are favorable to the HW-based schemes. The readers
and the writers run at the same speed, so the reads and the writes tend to be
interleaved. A cache-coherent platform can be more efficient, since it allows the
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Fig. 11. Relative performance, power, energy, and EDP for the RW application for varying execu-
tion speed ratios.

caching of shared data, as the experiments show. By increasing the cache size,
we can observe an improvement in performance for both the HW solutions, until
the gain saturates. The saturation is because of the point after which the cache
is larger than the entire working set (and further increase of the cache size do
not provide any benefit). Furthermore, in this situation, the WTU solution is
more efficient than WTI, because the invalidation of a cache line will force a
read from the shared-memory.

While enlarging the cache size is always beneficial for performance, it nega-
tively impacts energy. In larger caches, the energy required for a single access
is larger. Therefore, we can observe an optimal size corresponding to the point
where the hit ratio compensates the energy access cost. Moreover, notice that
the SW solution is very competitive from an energy point of view, because it
reduces the number of accesses to the high-performance, power-hungry data
cache.

The analysis of the sensitivity to the size of the object involved in the
communication (i.e., the buffer) show a similar trend as for the cache size.
In fact, the relation between the object used and the cache size determines
the cache hit ratio and the performance. Clearly, using bigger objects causes
an increase of the execution time, but this increase is the same for all the
cache-coherence schemes adopted. Still, using small objects for the data
interchange moves the load of the application from the communication to
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Fig. 12. Relative energy, performance, power, and EDP for the RW application for varying buffer
sizes.

the synchronization and the usefulness of the cache-coherent scheme tends
to decrease. This is shown in Figure 12, where a shared object of 256 bytes
appears to be the best choice, with respect to the 16-byte buffer (too small,
synchronization issues became dominant) and with respect to the 1 KB bytes
case, as well (the object is too large for the cache used).

5.2.2 Application Kernels. The analysis of the synthetic applications
shows that caching a variable is an energy-efficient solution when more reads
than writes occurs on that variable; this rule can be used as a guideline when
developing applications. This is what have been done with the MM application,
which shows both an energy and a performance improvements when shared
data are cached. This application, indeed, uses many shared variables as read-
only objects (the source operands). Moreover, the variables accessed for writing
(the result matrix slices), even if shared in principle, are actually used by just
one processor. This is because each processor is in charge of computing a mu-
tually exclusive portion of the result.

In Figure 13 are reported the performance, power, energy, and EDP, for the
MM application varying the matrix size. Results support the considerations
used in writing the code; this application benefits the advantages provided by
the cache-coherence protocols. In fact, the slices of the resulting matrix, even if
shared in principle, are actually used by just one processor. Each core computes
a mutually exclusive portion of the result.
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Fig. 13. Relative performance, power, energy, and EDP for the MM application for varying matrix
size.

The resulting access pattern on the actual shared data is composed mainly
of reads and, in this situation, the cache-coherent platforms obtain the best re-
sults. Given this access pattern, the difference between WT and WB policies is
immaterial; since most of the execution time is spent on accessing shared vari-
ables, it is the cache coherency by itself which makes the difference, regardless
of cache policy. Performance improvements and energy savings are around 30%
(EDP reduction of 50%).

One last observation is that the advantages of the hardware cache-coherent
solutions increase when larger matrices are used, because the cache is used
more intensively. However, these improvements occur until the matrix size
remains under a given limit, because when the data are too large, the number
of the needed cache refills increase, hence, degrading the efficiency of the cache-
coherence techniques.

Unfortunately, the nice sensitivity of MM to cache-coherence does not hold for
generic parallel applications, that do not follow the above-mentioned guideline,
such as the FFT and LU kernels, for which the impact of the cache coherence
are less effective. Figures 14 and 15 show the results for the FFT application
varying the vector size and for the LU application varying the matrix size.

Both these applications perform their computation using shared data, but
shared variables are accessed with several different patterns and it becomes
unlikely that many “good” sequences do exist. We notice the same behavior
observed for synthetic benchmarks, namely, the dominance of the cache policy
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with respect to the CC protocol; the advantage of avoiding memory writes as
for private as well for shared data is clear from the plot for both the appli-
cations. This advantage well amortize the overhead of larger tags and of the
increased complexity of the processor. Notice that energy, performance, and
EDP improvement are significant (over 50% in some cases).

Power figures deserve a specific comment. We notice that in many cases
power for WB schemes increases; this is because of the fact that a significant
contribution to energy reduction is because of an even larger improvement in
performance. Since power is average power, and thus the ratio of energy and
performance, power increase. In practice, the whole system is working with a
higher efficiency (i.e., with a higher average cost for the individual operations),
removing CPU stall cycles, which unfavorably consume energy without doing
any useful work.

6. SUMMARY AND CONCLUSIONS

This paper compares three different approaches for guaranteeing cache-
coherence for MPSoC architectures, namely, snoop-based coherence, a software-
based approach which prevents caching of shared data, and an OS-based
approach. All three solutions are, in principle, viable for tightly constrained
architectures, because they have limited overhead. Our findings can be sum-
marized as follows:

¢ The OS-based approach has excessively high cost. This underlines the critical
need for software libraries carefully optimized for a target hardware platform.
General-purpose libraries, such as those provided in the RTEMS system are
not a practical alternative in a highly performance- and power-constrained
context.

¢ Comparison between different snoop-based cache coherency schemes reveals
a strong sensitivity to the cache write policy more than the specific coherency
protocol. Write-back schemes appear to be more efficient, despite increased
hardware complexity of cache-coherency support.

¢ Hardware-based cache-coherence appears to be competitive in terms of per-
formance with respect to basic architectures with no hardware support, but
it has significant power cost when coherence traffic grows, thereby casting
some doubts on its viability when power constraints become tighter and the
degree of multiprocessing increases. This is because of the fact that the rel-
ative power and energy costs for an MPSoC are quite different from classi-
cal multiprocessors where the bus and shared memories are off-chip. More
specifically, the speed ratio between cache hit and shared memory access is
less than an order of magnitude and the consumption for accessing fast and
power-hungry cache memories is larger than that for for on-chip bus and
slower shared memories. Hence, it is harder to amortize power the cost of
caches when many redundant accesses are performed by the snoop devices.

¢ Light-weight schemes, which avoid caching of nonshared data, are generally
energy efficient. Moreover, they enjoy the advantage of scalability. Snoop-
based cache coherency is viable only on a bus-based system and extending
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hardware cache coherency to more complex MPSoC architectures with mul-
tihop, scalable high-bandwidth interconnection networks entails very signif-
icant challenges. On the contrary, careful allocation of shared variable in
distributed shared memories is feasible even when the architectures become
highly distributed. Clearly, programming support for memory mapping and
allocation is a requirement in this case.

e For a specific access pattern, i.e., read-dominated access to shared data, hard-
ware cache coherency has very significant advantages with respect to the non-
cacheable shared data solution. In this case, caching enables large speed-ups
(resulting in a better energy efficiency) and cache-coherency guarantees that
program correctness is preserved in case of rare, or unpredictable, writes. This
read-dominated behavior is definitely possible in real applications (think, for
example, to read accesses to a slowly varying coefficient array, or to compres-
sion table in a filter or compressor, which operates on many parallel frames).

Looking forward, our analysis indicates that a configurable, hybrid solution
may be the optimal choice for shared-memory MPSoCs. We envision an architec-
ture where memory regions can be declared as not cacheable, while snoop-based
cache coherency is provided for cacheable regions. This approach may open the
way for scalable large-scale MPSoC architectures, where noncacheable mem-
ories are used for communication between cache-coherent clusters. Defining
a programming model and developing efficient communication APIs for these
single-chip NUMA machines is an interesting and open research area.
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