
EECS 388: Computer Systems and Assembly
 Language

Homework 5 Solution

1. (20) How many RTI interrupt events must occur to generate
 a 15 minute delay assuming the MCLK is operating at
 2MHz and the RTR[2:0] bits are set for “110”? How do
 you set up the Real‐Time Interrupt Control Register (RTICTL)
 (i.e., enable RTI and set RTI pre-scale) for this purpose?

According to the table on page 229 of your textbook, the period of a
RTI interrupt is set by the MCLK frequency divided by a divisor stored in
RTR[2:0]. Therefore:

RTR[2:0] = “110” implies a clock divider of 218.
MCLK = 2 MHz and a divider of 218 implies that the frequency of
RTI interrupts is 7.6294 Hz (2 MHz / 218).
The time delay, or period, between RTI events is thus 1/7.6294
Hz = 0.1311 seconds (because period = 1 / frequency).

Now, if we want a delay of 15 minutes:

15 minutes = 900 seconds.
Number of RTI events for 15 minutes =

o (900 seconds)/(0.1311 seconds per delay) = 6,867.
o Thus, it will require about 6,867 RTI events

One must write the appropriate values into the RTICTL in order to
enable interrupts and to set the RTI frequency. The RTICTL register is a
memory-mapped location located at address $0014. The RTIE bit is the
MSB (bit 7), while the RTR[2:0] bits are the least-significant 3 bits (bits
2 through 0).

RTICTL EQU $0014 ; Equate for the address of the RTICTL register

LDAA %10000110 ; RTICTL mask (RTIE =’1’, RTR[2:0]
= “110”)

STAA RTICTL ; Store the value into RTICTL

2. (15) Textbook, page 291. Advanced problem #4. Change
 MCLK to 4 MHz.

Assuming MCLK is at 4 MHz (as stated above), and the pre-scaler is
set to 1, this means that the timing frequency is (4 MHz)/(21) = 2
MHz, or a period of 500 ns.

If the two counts (or timestamps) are $1993 and $07C8, then the
period of the measured signal (assuming no counter rollovers) is
$EE34, which is 60,980 counter ticks in decimal. This period, in
real-time, is thus:

(($FFFF - $1993) + $07C8) + 1  60,981 ticks
and
60,981 ticks * (500 ns / 1 tick) = 30.4905 ms.

3. (15) Textbook, page 291. Advanced problem #5.

If the period of the pulse being measured is greater than the
rollover time for the counter, then one must make sure to detect
counter rollovers in order to accurately measure the signal of
interest. Think of this process as noting every New Years Eve from
when you were born until the present time in order to figure out how
old you are. This requires one to modify the program to log every
counter rollover (pulse-accumulator overflow bit, or PAOVF).

Given the numbers from above (problem #2), we know that counter
is adjusted by 1 every 500 ns, and that the counter will rollover
when it reaches 216, or 65,536. This means that pulse length of
interest can be found by counting counter rollovers:

Period= # rollovers + # of extra ticks
= (500 ns / 1 tick) *[(# of rollovers)*(65,536 ticks/ 1 rollover)+
(current ticks)]

4. (25) Write a program to measure the period of a periodic
 signal connected to input channel 3 by measuring the
 count difference between two falling edges. Set PR2:PR0 =
 011. Use polling method.

This program is very much like the example program found on pg.
273 of the textbook.

; **
; Program Definitions
; **
REG_BASE EQU $0000 ; Base address for calculating offsets to other registers
TMSK1 EQU $8C ; Offset for TMSK1 register
TMSK2 EQU $8D ; Offset for TMSK2 register
TCTL4 EQU $8B ; Offset for TCTL4 register
TIOS EQU $80 ; Offset for TIOS register
TC3H EQU $96 ; Offset for TC3H register
TSCR EQU $86 ; Offset for TSCR register
TFLG1 EQU $8E ; Offset for TFLG1 register
TCNT EQU $84 ; Offset for TCNT register
TMSK2_IN EQU $03 ; Set the pre-scale bits
TCTL4_IN EQU $80 ; Configure falling edges (10)
TIOS_IN EQU $00 ; Select channel 3 for input compare
TSCR_IN EQU $80 ; Enable timer
CLR_CH3 EQU $08 ; Mask to clear channel 3 flag

; Data section
ORG $6000

edge1 FDB $0000 ; Reserve a word (16-bits) for edge measurement
period FDB $0000 ; Reserve a word (16-bits) for period
measurement

; Code section
ORG $4000

LDS #$8000 ; Initialize the stack pointer
JSR TIMERINIT ; Initialize the timer
JSR MEASURE ; Measure the period

SWI ; end the program

; **
; Function used to enable timer subsystem
; **
TIMERINIT

CLR TMSK1 ; disable interrupts
LDX #REG_BASE ; Load X with base address of registers

LDAA #TMSK2_IN ; Set pre-scale
STAA TMSSK2, X

LDAA #TCTL4_IN ; Configure for falling edges

STAA TCTL4, X

LDAA #TIOS_IN ; Select channel 3
STAA TIOS_IN, X

LDAA #TSCR_IN ; Enable timer
STAA TSCR_IN, X

RTS ; return

; **
; Function used to measure signal period
; via polling method
; **
MEASURE

LDAA #CLR_CH3 ; Clear channel 3 flag to prepare measurements
STAA TFLG1,X
; Grab measurement of first edge

WAIT1
BRCLR TFLG1,X,$08,WAIT1 ; Wait for an edge

LDD TCNT,X ; Load in counter value
STD edge1 ; Save the measurement

LDAA #CLR_CH3 ; Clear channel 3 flag again
STAA TFLG1,X

; Grab measurement of second edge
WAIT2

BRCLR TFLG1,X,$08,WAIT2 ; Wait for an edge
LDD TCNT,X ; Load in counter value
SUBD edge1 ; Calculate the difference between edges
STD period ; Store the period result

RTS ; return

5. (25) Generate a 1500Hz square wave with a 40% duty
 cycle (ON/PERIOD) on output compare channel 2 (OC2).
 MCLK = 8MHz. Set the pre-scaler to divide by 4. Use
interrupt.

This program is very much like the example program found on pg.
275 of the textbook except that it uses interrupts. If the MCLK runs
at 8 MHz and the pre-scaler is set to 4, then the counter will adjust
at a rate of (8 MHz)/4 = 2 Mhz, or with a period of 500 ns.

A 1500 Hz signal has a period of 666.67 microseconds, and a 40%
duty cycle means that it will be high for 0.4*666.67 microseconds or
266.67 microseconds, and low for 400 microseconds. This
translates to counter value of:

High counter:
= 266.67 microseconds * (1 tick / 0.5 microseconds)
= 534 ticks  $0216

Low counter:
= 400 microseconds * (1 tick / 0.5 microseconds)
= 800 ticks  $0320

; Program Equates for interrupts
INTCR EQU $001E
INTCR_IN EQU $60
; Program Equates for the timer circuitry
TMSK1 EQU $008C
TMSK2 EQU $008D
TCTL2 EQU $0089
TIOS EQU $0080
TC2H EQU $0094
TSCR EQU $0086
TFLG1 EQU $008E
TMSK1_IN EQU $04
TMSK2_IN EQU $02
TCTL2_IN EQU $10
TIOS_IN EQU $04
TSCR_IN EQU $80
HIGH_TIME EQU $0216
LOW_TIME EQU $0320

ORG $FFEA ; Register interrupt vector for timer channel 2
FDB MY_IRQ

ORG $4000 ; Initialize timer channel 2 and interrupts

LDS #$8000; Setup the stack

MOVB #TMSK1_IN, TMSK1 ; Enable interrupts on channel 2
MOVB #TMSK2_IN, TMSK2 ; Set prescale to 4
MOVB #TCTL2_IN, TCTL2 ; OC2 toggle on compare
MOVB #TIOS_IN, TIOS ; Select channel 2 for OC
MOVW #HIGH_TIME, TC2H ; Setup initial high time
MOVB #TSCR_IN, TSCR ; Enable timer
LDAA TFLG1
ORAA #$04 ; Clear timer flag
STAA TFLG1

MOVB #INTCR_IN, INTCR ; Setup interrupts
CLI ; Enable interrupts

LOOP BRA LOOP ; Infinitely loop

MY_IRQ
LDAA TFLG1
ORAA #$04 ; Clear timer flag
STAA TFLG1
; Setup duty cycle for next pulse
; Compare to low, if low then switch to high and vice-versa
LDD TC2H
CPD #LOW_TIME
BEQ SET_HI
MOVW #LOW_TIME, TC2H ; Setup next pulse width
BRA DONE

SET_HI
MOVW #HIGH_TIME, TC2H ; Setup next pulse width

DONE
RTI ; Return from interrupt

