
1

Caches for
Multiprocessor Architectures

Most slides adopted from David Patterson

David Andrews
Computer Engineering Group

University of Paderborn

dandrews@ittc.ku.edu

2

First, Where Do Multiprocessors Fit ?

 SISD (Single Instruction Single Data)
 Uniprocessors

 MISD (Multiple Instruction Single Data)
 ???; multiple processors on a single data stream

 SIMD (Single Instruction Multiple Data)
 Historical Examples: Illiac-IV, CM-2

 Simple programming model
 Low overhead
 Flexibility
 All custom integrated circuits

 Recent Example: IBM Blue Gene, Cell Processor
 MIMD (Multiple Instruction Multiple Data)

 Historical Examples: Cray T3D, SGI Origin
 Flexible
 Use off-the-shelf micros

 Recent Example: Virtex 2 P30 with 2 PPC 405’s
 Within General Computing MIMD current winner:

 Clusters, x Core PC’s

3

Major MIMD Styles

• Generalized Taxonomies Along Memory Access Lines

• Centralized Shared Memory
• Uniform Memory Access or Shared Memory Processor

• Global Address Space for All. Constant Access Time from Anywhere

• Decentralized memory (memory module with CPU)
• get more memory bandwidth, lower memory latency

• Drawback: Longer communication latency

• Drawback: Software model more complex

• Multiprocessor Systems on Chip Taxonomies Include
• Variability of “Cores”

• Homogeneous: All Processors Identical

• Heterogeneous: Different Cores {CPU + DSP}

4

SMP—Shared Memory Organization

 Caches serve to:

 Increase bandwidth
versus bus/memory

 Reduce latency of access

 Valuable for both private
data and shared data

 I/O & Memory Global Access

5

6

Classic Cache Coherency For Multiprocessors

-SMP Architectures := Snoopy Cache

-NUMA Architectures := Global Directory Cache

7

The Problem of Cache Coherency

8

Potential HW Coherency Solutions

 Snooping Solution (Small Numbers of PE’s):
 Send all requests for data to all processors

 Processors snoop to see if they have a copy and respond accordingly

 Requires broadcast, since caching information is at processors

 Works well with bus (natural broadcast medium)

 Dominates for small scale machines (most of the market)

 Directory-Based Schemes (Larger Numbers of PE’s)
 Keep track of what is being shared in 1 centralized place (logically)

 Distributed memory => distributed directory for scalability
(avoids bottlenecks)

 Send point-to-point requests to processors via network

 Scales better than Snooping

 Actually existed BEFORE Snooping-based schemes

9

Larger MPs

 Separate Memory per Processor

 Local or Remote access via memory controller

 1 Cache Coherency solution: non-cached pages

 Alternative: directory per cache that tracks state of every
block in every cache
 Which caches have a copies of block, dirty vs. clean, ...

 Info per memory block vs. per cache block?
 PLUS: In memory => simpler protocol (centralized/one location)

 MINUS: In memory => directory is ƒ(memory size) vs. ƒ(cache size)

 Prevent directory as bottleneck?
distribute directory entries with memory, each keeping track
of which Procs have copies of their blocks

10

Distributed Directory MPs

11

Network Examples

 Bi-directional Ring – EX: HP V Class

 2-D Mesh and Hypercube – SGI Origin and Cray T3E

 Crossbar and Omega Network – SMPs, IBM SP3, and IP
Routers

 Clusters using ethernet, Gigabit ethernet, Myrinet, etc.

 Properties of various networks will be discussed later

12

CC-NUMA Multiprocessor: Directory Protocol

 What is Cache Coherent Non-Uniform Memory Access (CC-
NUMA)?

 Similar to Snoopy Protocol: Three states
 Shared: ≥ 1 processors have data, memory up-to-date

 Uncached (no processor hasit; not valid in any cache)

 Exclusive: 1 processor (owner) has data;
memory out-of-date

 In addition to cache state, must track which processors have
data when in the shared state (usually bit vector, 1 if
processor has copy)

 Directory Size: Big => Limited Directory Schemes (Not to be
discussed)

13

Directory Protocol
 No bus and don’t want to broadcast:

 interconnect no longer single arbitration point

 all messages have explicit responses

 Terms: typically 3 processors involved
 Local node where a request originates

 Home node where the memory location
of an address resides

 Remote node has a copy of a cache
block, whether exclusive or shared

 Example messages on next slide:
P = processor number, A = address

14

Example Directory Protocol

 Message sent to directory causes two actions:
 Update the directory

 More messages to satisfy request

 Block is in Uncached state: the copy in memory is the current
value; only possible requests for that block are:
 Read miss: requesting processor sent data from memory &requestor made

only sharing node; state of block made Shared.

 Write miss: requesting processor is sent the value & becomes the Sharing
node. The block is made Exclusive to indicate that the only valid copy is
cached. Sharers indicates the identity of the owner.

 Block is Shared => the memory value is up-to-date:
 Read miss: requesting processor is sent back the data from memory &

requesting processor is added to the sharing set.

 Write miss: requesting processor is sent the value. All processors in the set
Sharers are sent invalidate messages, & Sharers is set to identity of requesting
processor. The state of the block is made Exclusive.

15

Example Directory Protocol

 Block is Exclusive: current value of the block is held in the cache of
the processor identified by the set Sharers (the owner) => three
possible directory requests:
 Read miss: owner processor sent data fetch message, causing state of block in

owner’s cache to transition to Shared and causes owner to send data to
directory, where it is written to memory & sent back to requesting processor.
Identity of requesting processor is added to set Sharers, which still contains the
identity of the processor that was the owner (since it still has a readable copy).
State is shared.

 Data write-back: owner processor is replacing the block and hence must write it
back, making memory copy up-to-date
(the home directory essentially becomes the owner), the block is now
Uncached, and the Sharer set is empty.

 Write miss: block has a new owner. A message is sent to old owner causing
the cache to send the value of the block to the directory from which it is sent to
the requesting processor, which becomes the new owner. Sharers is set to
identity of new owner, and state of block is made Exclusive.

16

Rough Timing Analysis

