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First, Where Do Multiprocessors Fit ?

SISD (Single Instruction Single Data)

+ Uniprocessors

MISD (Multiple Instruction Single Data)

* ?77?7; multiple processors on a single data stream

SIMD (Single Instruction Multiple Data)

+ Historical Examples: llliac-1V, CM-2
e Simple programming model
e Low overhead
e Flexibility
e All custom integrated circuits
+ Recent Example: IBM Blue Gene, Cell Processor

MIMD (Multiple Instruction Multiple Data)

+ Historical Examples: Cray T3D, SGl Origin
e Flexible
e Use off-the-shelf micros
+ Recent Example: Virtex 2 P30 with 2 PPC 405’s

Within General Computing MIMD current winner:
# Clusters, x Core PC’s



Major MIMD Styles

Generalized Taxonomies Along Memory Access Lines
Centralized Shared Memory

Uniform Memory Access or Shared Memory Processor
Global Address Space for All. Constant Access Time from Anywhere

Decentralized memory (memory module with CPU)
get more memory bandwidth, lower memory latency
Drawback: Longer communication latency
Drawback: Software model more complex

Multiprocessor Systems on Chip Taxonomies Include

Variability of “Cores”
Homogeneous: All Processors Identical
Heterogeneous: Different Cores {CPU + DSP}



SMP—Shared Memory Organization

m Caches serve to:

+ Increase bandwidth
versus bus/memory

+ Reduce latency of access

+ Valuable for both private
data and shared data

= /O & Memory Global Access



Large-Scale MP Designs

Memory: distributed with nonuniform access time
(“numa”) and scalable interconnect (distributed memory)

Examples: T3E: (see Ch. 1, Figs 1-21, page 45 of [CSG96])

/O] |Memon
: 100 cycles*

........................................................................




Classic Cache Coherency For Multiprocessors

-SMP Architectures := Snoopy Cache

-NUMA Architectures := Global Directory Cache
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The Problem of Cache Coherency
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Potential HW Coherency Solutions

m Snooping Solution (Small Numbers of PE’s):
+ Send all requests for data to all processors
+ Processors snoop to see if they have a copy and respond accordingly
+ Requires broadcast, since caching information is at processors
+» Works well with bus (natural broadcast medium)
+ Dominates for small scale machines (most of the market)

m Directory-Based Schemes (Larger Numbers of PE’s)
+ Keep track of what is being shared in 1 centralized place (logically)

+ Distributed memory => distributed directory for scalability
(avoids bottlenecks)

+ Send point-to-point requests to processors via network
+ Scales better than Snooping
+ Actually existed BEFORE Snooping-based schemes



Larger MPs

m Separate Memory per Processor
m Local or Remote access via memory controller
m 1 Cache Coherency solution: non-cached pages

m Alternative: per cache that tracks state of every
block in every cache
+ Which caches have a copies of block, dirty vs. clean, ...

= Info per memory block vs. per cache block?
+ PLUS: In memory => simpler protocol (centralized/one location)
+ MINUS: In memory => directory is f(memory size) vs. f(cache size)

m Prevent directory as bottleneck?

distribute directory entries with memory, each keeping track
of which Procs have copies of their blocks



Distributed Directory MPs

Interconnechon MNetanorl
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Network Examples

m Bi-directional Ring — EX: HP V Class
m 2-D Mesh and Hypercube — SGI Origin and Cray T3E

m Crossbar and Omega Network — SMPs, IBM SP3, and IP
Routers

m Clusters using ethernet, Gigabit ethernet, Myrinet, etc.

Properties of various networks will be discussed later
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CC-NUMA Multiprocessor: Directory Protocol

m What is Cache Coherent Non-Uniform Memory Access (CC-
NUMA)?

m Similar to Snoopy Protocol: Three states

< . 2 1 processors have data, memory up-to-date
o (no processor hasit; not valid in any cache)
o : 1 processor ( ) has data;
memory out-of-date
= |n addition to cache state, must track have

data when in the shared state (usually bit vector, 1 if
processor has copy)

m Directory Size: Big => Limited Directory Schemes (Not to be
discussed)
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Directory Protocol

= No bus and don’t want to broadcast:
+ interconnect no longer single arbitration point
+ all messages have explicit responses

m Terms: typically 3 processors involved

o where a request originates

o where the memory location
of an address resides

o has a copy of a cache

block, whether exclusive or shared

m Example messages on next slide:
P = processor number, A = address
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Example Directory Protocol

= Message sent to directory causes two actions:
+ Update the directory
+ More messages to satisfy request

= Blockis in state: the copy in memory is the current
value; only possible requests for that block are:

. : requesting processor sent data from memory &requestor made
sharing node; state of block made Shared.

. : requesting processor is sent the value & becomes the Sharing
node. The block is made Exclusive to indicate that the only valid copy is
cached. Sharers indicates the identity of the owner.

= Block is => the memory value is up-to-date:
. : requesting processor is sent back the data from memory &
requesting processor is added to the sharing set.
. : requesting processor is sent the value. All processors in the set

Sharers are sent invalidate messages, & Sharers is set to identity of requesting
processor. The state of the block is made Exclusive.
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Example Directory Protocol

= Block is . current value of the block is held in the cache of
the processor identified by the set Sharers (the owner) => three
possible directory requests:

. . owner processor sent data fetch message, causing state of block in
owner’s cache to transition to Shared and causes owner to send data to
directory, where it is written to memory & sent back to requesting processor.
Identity of requesting processor is added to set Sharers, which still contains the
identity of the processor that was the owner (since it still has a readable copy).
State is shared.

. . owner processor is replacing the block and hence must write it
back, making memory copy up-to-date
(the home directory essentially becomes the owner), the block is now
Uncached, and the Sharer set is empty.

. : block has a new owner. A message is sent to old owner causing
the cache to send the value of the block to the directory from which it is sent to
the requesting processor, which becomes the new owner. Sharers is set to
identity of new owner, and state of block is made Exclusive.
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Rough Timing Analysis

The previous Example looked at the bandwidth demands. The other key issue
for a paralle] program is remote memory access time, or latency. To get insight
into this, we use a simple example of a directory-based machine. Figure 8.30
shows the parameters we assume for our simple machine. It assumes that the time
to first word for a local memory access is 25 cycles and that the path to local
memory is 8 bytes wide, while the network interconnect is 2 bytes wide. This
model ignores the effects of contention, which are probably not too serious in the
parallel benchmarks we examine, with the possible exception of FFT, which uses
all-to-all communication. Contention could have a serious performance impact in
other work loads. :

Characteristic Number of processor clock cycles
Cache hit 1
Cache miss to local memory block size in bytes

25+ 2
Cache miss to remote home directory 25 block size in bytes

4
2

Cache miss to remotely cached data block size in bytes
(3-hop miss) 100 + 3

FIGURE B.30 Characteristics of the example directory-based machine. Misses can be
serviced locally (including from the local directory), at a remote home node, or using the ser-
vices of both the home node and another remote node that is caching an exclusive copy. This
last case is called a 3-hop miss and has a higher cost becausa it requires interrogating both
the home directory and a remote cache. Note that this simpie model does not account forin-
validation time. These network latencies are typical of what can be achieved in 1995-86 in
an MPP-style network interfaced in hardware to each node and assuming moderately fast
processors {150-200 MHz).
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