

26-30 November 2007 Washington, DC, USA

The Cross-Layer Paradigm In Next Generation Internet: Open Issues & Future Perspectives

Fabrizio Granelli

University of Trento, Italy granelli@dit.unitn.it

Goal

- To provide a survey of cross-layering solutions in today's networks
- To analyze the cross-layer paradigm and identify the key issues
- To outline promising scenarios where crosslayering could be successful

Table of Contents

- Layering & Cross-Layering
- Current penetration of CL
- Key Issues
 - □ Signaling
- A promising scenario
 - Distributed protocol stacks
- Conclusions

Layering & Cross-Layering

Layering (ISO/OSI – TCP/IP)

- □ Enable fast development of interoperable systems, but...
- □ ... limited performance of the overall architecture, due to the lack of coordination among protocols

Cross-Layering

- □ A recent design principle: allow coordination, interaction and joint design of protocols crossing different layers
- □ It seems appropriate for specific scenarios, such as wireless, where independent layer design may be sub-optimal
- Advantages demonstrated per case and "ad hoc" but not systematically

Which is the penetration of crosslayering in current networks?

"Implicit" in all IP networks:

"Explicit" in wireless networks

- □ Layered paradigm works poorly in wireless networks, due to:
 - User / Node Mobility
 - Limited data transfer performance
 - Low energy efficiency
 - Quality of Service (QoS) requirements
- Tighter integration among the layers is required for QoS, congestion control, handover

The wireless scenario

			Data transfer performance				Energy			Quality of			Cross-Laver	
Technology		Mobility	Physical rate		Spectrum efficiency		consumption/ battery life		n/	Service			Design Penetration	
2G (GSM)			9.6 – 57.6 K	b/s	52	bit/s/Hz								
3G (UMTS)		Global roaming	384 Kb/s (mc 2Mb/s (statior	5 bit/	/s/Hz	o 2.88 s/Hz		Days		С	High	e tu	High	
3G LTE		J	100 Mb/s			/s/Hz				UV		LY)		
Fixed WiMAX (802.16-2004)			10 Mb/s (max up to 70			oit/s/Hz				(4		es,		
Mobile WiMAX (802.16e- 2005)		h	2-3 Mb/s (max up to 15			/s/Hz				bu fo		ed de	Medium	
802.11b			11 Mbps			.55								
802.11a/g			54 Mbps			.7						r	Low	
802.11n			250 Mbps			.22								
Bluetooth (2.0)		Fixed	Up to 2.1 M	1 bit/	/s/Hz	/s/Hz		Hours			Low		Low	
UVVB			675 Mb/s			it/s/Hz								

26 - 30 November 2007

Fabrizio Granelli (granelli@dit.unitn.it)

Possible Cross-layer Interactions

26 - 30 November 2007

Fabrizio Granelli (granelli@dit.unitn.it)

Key Issues

Cross-layering vs. layering Need to be cautious [*] Cost-benefit analysis Dependant on the scenario Design framework No "unifying theory" No formal modeling Signaling

□ Internal or network-wide

^[*] V. Kawada, and P.R. Kumar, "A Cautionary Perspective on Cross-Layer Design," IEEE Wireless Communications, Vol. 12, No. 1, pp. 3-11, Feb. 2005.

CL Signaling Architectures

26 - 30 November 2007

CL Signaling Architectures

Cross-Layer Signaling Method	Scope	Propagation Latency	Communication Overhead	Processing Overhead	Direction of signaling	Packet Dependant	Requires Standardi- zation
Interlayer Signaling Pipe							
Packet Headers	Local	Medium	High	Medium	Path dependant	\checkmark	\checkmark
Packet Structures	Local	Medium	High	Medium	Path dependant	\checkmark	×
Direct Interlayer Communication							
ICMP messages	Local	Low	Medium	High	Path independent	×	\checkmark
Callback functions	Local	Low	Low	Low	Path independent	×	×
Central Cross-layer Plane	Local	Low	Low	Low	Path independent	×	×
Network-wide Cross-layer Signaling							
Packet Headers	Local/Network-wide	High	Low	Medium	Path dependant	\checkmark	\checkmark
ICMP messages	Local/Network-wide	High	High	High	Path independent	×	\checkmark

D. Kliazovich, M. Devetsikiotis, F. Granelli, "Formal Methods in Cross-Layer Modeling and Optimization of Wireless Networks: State-of-the-art and Future Directions," to appear in "Heterogeneous Next Generation Networking: Innovations and Platform", Edited by: Prof. Stavros Kotsopoulos and Dr. Konstantinos Ioannou.

Distributed Cross-Layering

Idea: Extend the idea of protocol stack modularity making it network-wide – <u>Distributed Protocol Stacks</u>

Details

- Each functional block of the protocol stack (a protocol layer or its part) can be abstracted into a separate module and implemented at a different node in the network
- □ Communication between host protocol stack and removed module is performed using a custom "lightweight" protocol

Application

- Move protocol stack functions that generate high communication overhead into the network core behind the bottleneck link
- □ Caution: not all the protocol stack functions can be abstracted and separated

ARQ Proxy - Approach

D. Kliazovich, F. Granelli, S. Redana, N. Riato, "Cross-Layer Error Control Optimization in 3G LTE," Globecom 2007.

26 - 30 November 2007

Fabrizio Granelli (granelli@dit.unitn.it)

ARQ Proxy – Packet Identification

• 3G LTE: Hash values

WiFi: Frame Sequence Numbers

Conclusions

- Cross-Layering represents a promising design paradigm, especially in wireless networks
- Fine tuning and optimization in complex scenarios require some sort of cross-layering, at the expense of interoperability
- Cross-layer signaling has a high potential
 "Distributing" the protocol stack
 Cognitive networking