Command Line Interface
Techniques

EECS 268

Dr. Douglas Niehaus
Jared Straub

EECS 268 1 D. Niehaus and J. Straub © 2010-2011

Overview

« Command line use is not emphasized by the GUI
centric approach used by many applications and
systems for many reasons

* GUIs are easier for beginners

« GUIs present a large amount of information that
can be helpful to users figuring things out

« Command Line Interface (CLI) a common term
 For casual users, GUIS are often the best choice

» For professional users, GUIs often impose limits on
productivity and power that can be annoying

« CLl is often preferred by professional SWE and
System Administrators as a way to overcome these
limits in a variety of situations

EECS 268 2 D. Niehaus and J. Straub © 2010-2011

Overview

Limitations imposed by GUIs

« By presenting all options, they add complexity to
each specific use, since all uses are supported

* Clicking makes user feel busy but it is often not
the fastest way to accomplish a given actions

 Particularly well-known actions

 Script languages used to create one-time
capabilities, or long-lived commands cannot easily
use GUI capabilities

e CLI tools are usually easy to use in scripts

As a result of these and other limitations many SWE
prefer the CLI for many activities

* You should at least know how to use it

EECS 268 3 D. Niehaus and J. Straub © 2010-2011

Overview

Other motivations for CLI use

« Remote access (SSH) using command line is
lower BW than remote GUI or remote Desktop

« Remote GUI/Desktop over a slow connection is
at least painful and may be impossible

* In many systems the command line interface is a
superset of the GUI

« GUIs are often wrappers for CLI
« Many systems do not provide GUIs for all tasks
« Embedded systems of many varieties
« Routers, Machine Control, etc
« GUIs built for them often emit CLI commands

EECS 268 4 D. Niehaus and J. Straub © 2010-2011

Overview

* In other cases, a variety of basic SWE activities are
generally faster using CLI

« Time is the most valuable SWE resource

« Cumulative time saving on activities done many
times every day for many years can add up

 Difference between adequate and great SWE is
based partly in the ability to have a higher sustained
productivity

« Continuous development of more efficient
methods is a big part of that

 Scripting and CLI use as part of developing a
personal set of tools and methods is a big part of
this for many SWE professionals

EECS 268 5 D. Niehaus and J. Straub © 2010-2011

GUI/CLI Design Patterns

« There are two common ways to design software that
can robustly support both CLI and GUI access

* One way emphasizes library or module layers that
provide powerful high-level interfaces for all
application semantics

« GUI an CLI tools are then independently
implemented thin wrappers for library routine calls

* Another uses the CL/implementation as the primary
interface for all application capabilities

« GUI is then an independent application which
constructs and emits CLI command strings

« Both are often fine for a given application, each is the
best approach for some applications

EECS 268 6 D. Niehaus and J. Straub © 2010-2011

Remainder of Presentation

* Directory Hierarchy Navigation and Use

* File Access and Manipulation

« Command Argument Completion and Regular
Expressions

« Combining Commands: Pipes

« CLI Context

« Command Path, Environment Variables, History
« Combining Commands: Basic Shell and Python
Scripts as Utility Commands
* Process Management
 Remote Machine Access
« Convention

« “$ fred A B C”: command “fred” invoked with
arguments “A B C” at command prompt “$”

EECS 268 D. Niehaus and J. Straub © 2010-2011

Directory Hierarchies

CLI assumes that the user is always at a specific
location within the overall directory hierarchy (DH)

« Rooted a ”/” and branching from there to arbitrary
levels

Current Working Directory (CWD)
 Current location within directory hierarchy
. pwd command prints CWD path
“.” symbolizes CWD “..” symbolizes parent(CWD)
I\/Iovement within DH - cd command changes CWD
 No argument or “~” - Home Directory of user
 cd path — change CWD to specified path
» Absolute Path: starts with /”
» Relative Path: starts with “.” or “..”

EECS 268 8 D. Niehaus and J. Straub © 2010-2011

Directory Hierarchies

 List contents of a directory
e “$ s .” or “$ Is” lists names of CWD contents
« “$ Is -l path” for long form information path
o |f directory, then contents of it
« “$ Is -d path” to list properties of directory itself
* Create and Delete Directories
* “$ mkdir path” - make end element of path
 “$ mkdir -p path” - make all missing parts of path
« “$ rmdir path “ - delete last path element
* Must me empty
« “brm -fr path” - remove last element and
everything underneath it, recursively

e Disk Use: “$ du .” - size of each file and dir under “.

EECS 268 9 D. Niehaus and J. Straub © 2010-2011

Directory Hierarchies

« BASH — Born Again Shell
» Bourne shell was original UNIX shell
e Stupid Programmer Joke
« Provides commands keeping a stack of directories
« Useful when bouncing around to different locations
using a single prompt
e Try “M-x manual-entry” in Emacs on “pushd”
« Search for specific information
« “$ pushd path” - pushes path on stack
e Switches top two elements with no argument
« “$ dirs” - prints stack
« “popd” - pops top element making second CWD

- Numeric arguments and several variations listed in
manual page entries

EECS 268 10 D. Niehaus and J. Straub © 2010-2011

Directory Hierarchies

» Bash Prompt customization can help
e Mine: export PS1="\h:\\W\$ "
« Defined in ~/.bashrc
« Use “$. ~/.bashrc” to invoke new version
« Prompt: “machine CWD$”
Try setting yours using “[]” around pair instead of “$”
Leave a space after prompt or not and try it out
Many possible components “M-x manual-entry bash”
« Search for “Prompting”

| like s short prompt, and a machine name as | log
iInto several machines simultaneously

« Others like more information — customize as you like

EECS 268 11 D. Niehaus and J. Straub © 2010-2011

Files

« “$ file path” - tells you type of object specified
» Try it out on a range of file types
« Some are text (readable) and some binary
« Reading Files
« “$ cat path” - display contents
» “$ more path” - display contents with some control
» “$ less path” - display contents with more control
« Copy Files
« “$ cp path1 path2” - copy path1 to path2
« “$ cp -R path1 path2” - recursively copy
« “ rsync -av path1 path2” - smarter copy

 “$ tar -cf foo.tar path” - create archive “foo.tar” of
path and DH under it

EECS D. Niehaus and J. Straub © 2010-2011

Files

* File Permissions

* Three levels: Owner, Group, Other
e Three bits in each: read, write, execute

« “$ Is -l path” to see owner, group, permissions

« Often expressed as OCTAL numbers
o 777" = "rwXrwxrwx”
¢ “664” = “rw-rw-r--"
¢ “444” = “r—r--r--"

» Execute for dirs is overloaded to mean “usable as

a component of a bigger path”

» Leading (4™) component has special property bits

* Try Google on “UNIX File Permissions”

EECS 268 13 D. Niehaus and J. Straub © 2010-2011

Files

« Modifying properties
» “$ chown fred path” - change owner of path to fred
« “$ chgrp sue path” - change group of path to sue
« “6 chmod 664 path” - change permissions of path
 File Content processing
« 'S grep “reg-expr” path'
* Look at each line of “path” and print those

containing instances of “reg-expr” regular
expression

* awk — tool supporting rule (predicate-action pairs)
per-line processing of files

« “$ diff path1 path2” - print per-line differences
between path1 and path?2

EECS 268 14 D. Niehaus and J. Straub © 2010-2011

Files

 File Content processing
« “$ sed -e'expr' path” - stream editor applying the
specified expression to file in path
« One common use is substitution: 's/e1/e2/g”

 This says substitute every instance of
expression el with e2, globally

« Without “g” at the end it would do it only first
time
 Older style syntax from “ed” editor
e Also used in vim, IIRC
 “$ sort path” - sort contents of path line by line
« Arguments can modify type of sort and data
from each line used

e Other useful content commands: head, tail

EECS 268 15 D. Niehaus and J. Straub © 2010-2011

Files
Finding Files
« “$ find . -print” - print paths of all files under CWD

» Use grep and a pipe, explained later to look at a
subset but “-name” option is similar

» “type x” where x is “f” or “d” can distinguish files
and directories

» Very powerful tool, including a “-exec” option for
executing scripts on each file qualifying

» Expressions are evaluated left to right

EECS 268 16 D. Niehaus and J. Straub © 2010-2011

CLI Arguments

« Path arguments on CLI are Regular Expressions
e Literals: “fred”, or “../sue”, or “./joe/john”
All standard RE elements are also legal

« “$ Is -l *.cc” - list all elements in “.” ending in “.cc”

 All basic RE elements supported, with dialect
roughly the same as vim or emacs

“$ Is [abc].txt” - “a.txt” or “b.txt” or “c.txt”

“$ Is fred.””
* All files with base name fred, regardless of what

follows the “.
“Is */fred.™”

« All files with base name “fred” in any directory
within CWD, but only at first level, not all levels

EECS 268 17 D. Niehaus and J. Straub © 2010-2011

CLI Arguments

TAB completion also can speed you up a lot
« BASH is always watching you
Command Path

 Start typing a command name and hit Tab when
partially done

* |t may complete for you if BASH is sure

e |[f not, either it does not exist, or too many choices
* Try “$ g<TAB>" - too many choices
* Try “$ gc<TAB>" - 14 choices

* They are not really in the local directory but more
on that a bit later

« Good way to figure out the name of a command
partially remembered

EECS 268 18 D. Niehaus and J. Straub © 2010-2011

CLI Arguments

* File arguments are treated similarly
« Completed if BASH is sure a unique choice exits
* Not if several choices exist or BASH is clueless

« Naming directories in hierarchies so that frequently
used components have “easy unique prefixes” can
make typing paths at the command line fast

 Remember that many tasks are done many many
times every day

 Typing path names (CLlI)
» Clicking through path components (GUI)

» Basic principle of optimization is reduce overhead of
those operations done most frequently

EECS 268 19 D. Niehaus and J. Straub © 2010-2011

Redirection and Pipes

UNIX philosophy for CLI use is to create a large
number of commands useful for one kind of activity

« Which are written according to the “pipe”
convention” to promote us in combinations

Standard I/O ports
« STDIN — all commands read STDIN
« Keyboard by default
« STDOUT - all commands write to STDOUT
« Screen by default

« STDERR — can be used separately for “error”
output to distinguish it from “regular” output

« Key point is user can “redirect” standard I/O ports

EECS 268 20 D. Niehaus and J. Straub © 2010-2011

Redirection and Pipes

* Redirection
» “< path” - redirection STDIN to come from a path
* “> path” - redirects STDOUT to go to a path
« “>> path” - appends to the file at path

« “$ cmd1 | cmd2” - redirect STDOUT of cmd1 to
STDIN of cmd2

* Thus, cmd2 processes output of cmd1
« No limit on number of pipe stages

« Example: find largest uses of disk space under you
HOME directory when your quota is exceeded

* “$ du ~ | sort -nr >hogs”

« What is this doing? Try to describe it in words,
look up command options, give it a try

EECS 268 21 D. Niehaus and J. Straub © 2010-2011

Redirection and Pipes

e “$ make > make.out”

« Redirects STDOU to “make.out” to preserve output
for later analysis

 Errors still come to STDERR making analysis
bogus

e ‘S make >& make.out”

e Redirects BOTH STDOUT and STDERR to
make.out

« Ugly obscure syntax... just remember it like | do

o “tail -f make.out” lets you watch output as it is
produced, but you have to watch for the end as
it just sits there

EECS 268 22 D. Niehaus and J. Straub © 2010-2011

Redirection and Pipes

e “$ sort -nr <in_file >out_file”

« Reads lines from “in_file” and outputs them in
sorted order into “out_file”

» “tee” outputs to a file and to STDOUT
o Try:
 “$ du ~ | tee out1 | sort -nr >out2”
* “$ head out1”
* “$ head out2”
« “$ sort -nr <out1 >out3”
« “$ diff out1 out3”

EECS 268 23 D. Niehaus and J. Straub © 2010-2011

CLI Context

Commands are type at the CLI in the context of the
user typing them, which provides an environment
within which the command is interpreted

Environment is defined by the environment variables
e “§ env” lists them
 “echo $HOME” prints the one named HOME
* The echo command echoes its arguments
e “$<env-var>" tells Bach to look for an
environment variable named <env-var> and
substitute its variable
PATH variable defines and ordered set of directories
which are searched for command names
« Set members separated by colons (:)
e First match found is used
« SHOME/bin often put first for per-user commands

EECS 268 24 D. Niehaus and J. Straub © 2010-2011

CLI Context

“~/.bashrc” file used to provide customized definitions
of environment variables, add to existing ones, or
create new ones

« “$ which emacs” outputs path of file named “emacs”
used as the command

* If you create a Python script named “emacs”, put it in
$HOME/bin, with SHOME/bin first on your $PATH,
what will happen when you type:

« “$ emacs”
« Bash records a history of all commands
 “$ history”
« Up-arrow and Down-arrow keys let you browse
¢« “$ l<cmd-number>” Iets you repeat a command

EECS 268 D. Niehaus and J. Straub © 2010-2011

CLI Context

“$ I<reg-ex>" also lets you repeat the first match to
the <reg-ex> while searching back in history
Command line editing

« Emacs commands apply to command line text
 Movement (C-a, C-e), cut (C-k), paste (C-y), etc
* Type at any point to insert text

« Return when cursor anywhere on line executes it

“$ alias cmd='"string" is the simplest way for you to
define your own commands

» Often used to create short versions of a frequently
used command or specify default options

« Try “$ alias” to see if you have any defined

EECS 268 26 D. Niehaus and J. Straub © 2010-2011

CLI Context

“~/.bashrc”

1as
1as
1as
lias
lias

oo

EECS 268

Is=ls
11="Is -I'
pd=pushd
pp=popd

h=history

27

Defining common and convenient commands in

D. Niehaus and J. Straub © 2010-2011

Scripts
« BASH script is a file containing a set of statements
« Conditional and looping statements exist

* You can look them up

 “$ man bash” or “M-x manual-entry” in emacs
« Straight linear code is quite common

« Each statement can be just as if typed at CLI
 |nvocation

« “$ bash path” interprets contents of path as a set
of Bash statements

« “4!/bin/bash” in first line of script specifies
interpreter, similar to Python, and permits giving
execute permission to script file directly

EECS 268 28 D. Niehaus and J. Straub © 2010-2011

Scripts

Bash script arguments
« $1, $2, etc — each argument by position
« $* - all arguments
« $0 — command name element
Bash is basically a full power programming language
« Competing with all the others: Perl, Python, Ruby
« Except for simple straight-line scripts | would
generally prefer to write in Python
« YMMV
Python: 0s.system() routine takes a string as arg
* Interpreted as if it were type at CLI, pipes too
« Python wrappers (GUI) can often do little except
build CLI strings, using existing commands
* 0S.popen and variants worth some research as
they also support controlling STDIN/STDOUT

EECS 268 29 D. Niehaus and J. Straub © 2010-2011

Scripts

« Create and example script or two
* echo “hello World”
e echo $*
« Call some other programs, whatever
e Create $HOME/bin
« Add it to your PATH in your .bashrc
« “$. ~/.bashrc” remember, to use it in current shell
export PATH=$PATH:$HOME/bin
» Export keyword ensures definition exported to all
subsequently executed shells
« Recall how you were able to call PDB from Emacs

« Consider things you do a lot or things you have
trouble remembering as candidates for
Implementation as personal commands using scripts

EECS 268 30 D. Niehaus and J. Straub © 2010-2011

Processes

« Each CLI command runs as separate child process
 Just like every line in a Makefile
« Parent Bash process waits until child completes
e Then give prompt
 Ampersand (&) tells the Parent not to wait
 Child now running “in the background”
* “$ emacs” vs “$ emacs &”

« Sometimes when you forget &, you can stop the
current job (C-z), which gives you the prompt

* Then use “$ bg” to make job continue running in
the background

« Corresponding “fg” command exists
* Learn more of job control on Bash man page

EECS 268 31 D. Niehaus and J. Straub © 2010-2011

Processes

 All processes have a unique identifier — PID (integer)
« Echoed when a process starts in background
« “$ echo hello &”
« Job number in square braces, PID after

 Finishes at once, but job completion
announcement echoed at next RETURN

o List all your active processes

« “$ ps” - same user and terminal as invocation
 List all processes in system

« “$ ps aux” - includes User ID of owner

 Pipe into grep to find all processes owned by your
login ID: “$ps aux | grep <your-login>"

EECS 268 32 D. Niehaus and J. Straub © 2010-2011

Processes

“$ ps alx” also interesting
Pipe output into head or more to see top line giving
title to each column

* You can look up any you like, but some are
particularly interesting

* PID — Process ID

« PPID — Parent process PID

« COMMAND - executable process is running

* %CPU — percentage of CPU consumed by process
* %9 MEM — percentage of memory used

* UID — user ID of process owner

 USER - login name of process owner

EECS 268 33 D. Niehaus and J. Straub © 2010-2011

Processes

« Sometimes a process goes crazy
 Firefox 3.6, but not 3.6
« “$ ps aux | grep firefox” to find PID
« “$ kill -9 PID” - to kill it
 Technically it sends Signal with integer value 9
« “% Kill -signal name” - uses signal name
 “$ Kill -I” - lists all signal names and numbers

« “$ top” - gives summary system state and
continuously updated active process list

e Sorted by %CPU
 Note cumulated CPU TIME column

EECS 268 34 D. Niehaus and J. Straub © 2010-2011

Remote Access

Secure Shell (ssh)
« “$ ssh mach” - login into mach as current user
 “$ ssh -| other mach” - log into mach as user
“other” instead
* Or, “$ ssh other@mach” is another form
 “% ssh -p X mach” log into mach using non-
standard port X, standard SSH port == 22
Secure Copy
« “$ scp source-path destination-path”

e Source and destination paths can be local or
remote “user@mach:path”
Screen — powerful tool to manage, detach and
reattach, several shell or other remote sessions on a
single remote machine using a single connection

EECS 268 35 D. Niehaus and J. Straub © 2010-2011

mailto:other@mach
mailto:user@mach

Conclusion

« The CLI is a powerful and versatile tool giving access
to thousands of commands

e CLl is faster for some purposes than GUI methods

e CLI provides some capabilities GUls do not

« GUIs provide some capabilitie CLI does not

« GUI diff wrappers ar worth checking out
e CLIis good to know

o Life long learning of new commands and refining
your methods is strongly relevant

* Your preferences and methods should suit you
* Learn from other people's methods

EECS 268 36 D. Niehaus and J. Straub © 2010-2011

	
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

