
1

 Introduction to Cache’s

This week’s Focus is on Fundamentals

David Andrews
Computer Engineering Group
University of Paderborn

dandrews@ittc.ku.edu

2

Agenda

 The Domain of Cache’s
 Fundamental Level in Memory Hierarchy
 Prevent Slowdowns of CPU

 Instruction Fetching
 Data Fetching

 Why The Work
 Locality of Reference

 Temporal
 Spatial

 Baseline Cache Operation
 Address Comparisons and Data Blocks (Lines)
 Address Comparisons based on Tags

 Common Organizations
 Direct Mapped

 Simple but slowest

 Fully Associative
 Most Complex and Fastest

 Set Associative
 Close to Fully Associative Performance + Simplicity of Direct

3

Agenda (Continued)

 Cache Control
 Update Policies

 Write Back, Write Through

 Replacement Policies
 Selecting Which “Block” to Replace

4

The Domain of Caches

 Why Were Caches Created ?
 Performance, Performance, Performance……Any Questions ?

 Consider This….
 We want RISC Scalar CPU to Input 1 Instruction per Clock

 CPU Fetches Each Instruction From DRAM (Cheap but Dense Memory)

 but has to wait 40/.4 = 100 Clocks between Accesses Due to Cycle Time

– DRAM Slow
– Bus Slow (Cycle Times + Arbitration not Even Considered Here)
– CPU Pin Limited (Prevents Simultaneous Instruction Fetch)

5

Achieving A Memory Hierarchy

 Objective: Make System that:
 1: Provides Bulk and Cost Close to Disk

 2: Provides Performance of Registers/CPU

6

Review: Who Cares About the Memory Hierarchy?
(Slide from David Patterson)

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU
19

82

Processor-Memory
Performance Gap:
(grows 50% / year)

P
er

fo
rm

an
ce

“Moore’s Law”

 Processor Only Thus Far in Course:
 CPU cost/performance, ISA, Pipelined Execution

 CPU-DRAM Gap

 1980: no cache in µproc; 1995 2-level cache on chip
(1989 first Intel µproc with a cache on chip)

7

Processor-Memory Performance Gap “Tax”
(Slide from David Patterson)

 Processor % Area %Transistors

(_cost) (_power)

 Alpha 21164 37% 77%

 StrongArm SA110 61% 94%

 Pentium Pro 64% 88%
 2 dies per package: Proc/I$/D$ + L2$

 Caches have no inherent value,
only try to close performance gap

8

Why Caches Work

 Principle of Locality:
 Temporal: If you use an instruction/data item in the near past, then you will

probably use it again in the near future.
 Loops
 Variable re-use

 Spatial: If you use an instruction/data item, then you will probably use others
close in address space

 Sequential Instruction Execution
 Data Arrays

 Basic Operation:
 CPU Issues Address
 Cache Compares To Existing Addresses (Tag Compare)

 If hit, continue
 If miss, stop execution and pull in complete line

– Cache refill times can be considerable. Worsens with multi-level caches.
We won’t consider refill times in our basic coverage today

9

Big Picture Operation

 Cache is Based on SRAM (D-Flip Flops).
 Much Faster than DRAM

 Cache Memory is Limited
 Obviously, Map Multiple Locations From Main Memory into Cache

 Question: How Do We Decide The Mapping ?
 Direct Mapped

 Fully Associative

 Set Associative

 Lets First Look At Cache Organization

10

Direct Mapped Cache Organization

 Break Address Into 3 Parts
 Block Offset

 Index

 Tag:

11

Sizing Analysis

 Direct Mapped Cache Sizing
 Given by Index x Block Size (in Bytes)

 Total Size = 2#index_bits x 2 #block_offset_bits

 This Example = 23 x 22 = 25 = 32 bytes

 Note* Independent of Tag Size

– Does Cache Size Change for this Example for 32 bit Address ?
 How Many Blocks Mapped into Common Line ?

– Does this change for 32 bit Address ?

12

Fully Associative Cache

 Tag Can Go Anywhere: Better Utilization

13

Set Associative

 2-Way Set Associative
 “Way-ness” :

 = # Storage Locations

 = # Comparisons

14

2-Way Set Associative Cache (Better Representation)

 Sets Formation as Grouped Blocks

 N sets := N:1 Multiplexers

 Wayness = # Multiplexers

 Wayness = # Comparitors

15

4-Way Set Associative

 4-Way Uses 4 Comparitors

 2 Sets (In this Example)

 4 Places to put a Block

16

A Little Comparison Between Organizations

 Direct, Full, and Set Associative are all really the same

1

M

1

#

Muxes

N:1

N/M:1

N:1

Size of

Muxes

N1NFull Ass.

MN/MMSet Ass.

M way

1N1Direct

Comments#

Comp

#setsWay-

ness

Associativity

N Lines

17

Measuring Performance

How We Measure Cache Performance:

 Hit rate: Percentage of Accesses Issued by CPU Found in Cache

 H usually pretty high; say 96 - 99%

 Average Access Time: The Average, or Effective Access Time
Using a Cache

 Tacc = tcache x h + tmm(1-h)

 Performance is Very Sensitive to Miss Rate (1- Hit Rate)
 Consider ratio of 100:1 cycle time difference

18

Performance Effects of Cache

 Assume Cache is 100x Faster Than Main Memory

clock cycles

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120

Hit Rate

A
v
e
r
a
g

e
 C

lo
c
k
 C

y
c
le

s

Series1

19

Cache Misses and Size

 Compulsary Misses: Assumes an infinite size cache. Compulary misses occur when a block is first accessed.
Also called “Cold Start” misses

 Capacity Misses: If cache cannot contain all blocks (program/data) needed, then misses occur because
blocks are discarded and then later retrieved.

 Conflict: Misses due to associativity constraints. No Conflict misses for Fully Associative. Some for set
associative and the most for direct mapped.

 Consider Graph for Fully Associative Cache (No Conflict Info in this Graph)

20

Effects of Associativity

 Does Associativity Effect Hit Rate ?
 You bet…..

 Simple Thought Game…
 An Increase in Associativity Enables More Options on Where an

Instruction/Datum Can be Stored in Cache
 Will a Set Associative Cache Ever Perform Worse than A Direct Mapped

Cache ?

 Will a Fully Associative Cache Ever Perform Worse than a Set Associative
Cache ?

 Conflict Misses: Hit Rate Differences Between Levels of Associativity.

21

Cache Size (KB)

M
is

s
Ra

te
 p

er
 T

yp
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

1
6

3
2

6
4

1
2

8

1-way

2-way

4-way

8-way
Capacity

Compulsory

3Cs Absolute Miss Rate (SPEC92)
(Slide from David Patterson)

Conflict

Compulsory vanishingly
small

22

Cache Size (KB)

M
is

s
Ra

te
 p

er
 T

yp
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

1
6

3
2

6
4

1
2

8

1-way

2-way

4-way

8-way
Capacity

Compulsory

2:1 Cache Rule
(Slide from David Patterson)

Conflict

 miss rate 1-way associative cache size X
= miss rate 2-way associative cache size X/2

23

Block Size (bytes)

Miss
Rate

0%

5%

10%

15%

20%

25%

1
6

3
2

6
4

1
2

8

2
5

6

1K

4K

16K

64K

256K

1. Reduce Misses via Larger Block Size
Slide from David Patterson

24

Block Replacement

 When a miss occurs and all blocks (direct, set, full ?) are
occupied, which one do you replace ?
 Thought Experiment: What would ideal replacement policy be ?

 Requires us to predict future

 Realistic Policies
 Random: Simply pick one

 Least Recently Used (LRU): Relies on the past to predict the future.
Don’t replace a block that has recently been used, replace block that
has not been used for the longest time.

 First In, First Out (FIFO): Simpler version of LRU.

 LRU is probably the most common. Best approximation we have to
ideal. Check out data sheets for your Pentiums….

25

What Happens on a Write ?

 Write Back: Only Update the Cache, not Main Memory
 Pro’s

 Best Performer: All Accesses Occur At Cache Cycle Times

 Minimizes Updates to a Single Variable (summation etc.)

 Con’s
 Modest Increase in Complexity (A Dirty Bit)

 Must First “Flush” Back Dirty Line Before Replacement

 Inconsisent Memory State (Multiple Values in Cache and Main Memory Possible)

 Write Through: Update Through Cache and Into Main Memory
 Pro’s

 Keeps Cache and Main Memory Consistent

– Important for Multiprocessors ?
 Line Refills Simple and Fast, No Need to Flush Stale Data

 Con’s

 Writes Occur at Main Memory Speed, not Cache
 How Often Do We Write ?

