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      Introduction to Cache’s

This week’s Focus is on Fundamentals

David Andrews
Computer Engineering Group
University of Paderborn

dandrews@ittc.ku.edu
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Agenda

 The Domain of Cache’s
 Fundamental Level in Memory Hierarchy
 Prevent Slowdowns of CPU

 Instruction Fetching
 Data Fetching

 Why The Work
 Locality of Reference

 Temporal
 Spatial

 Baseline Cache Operation
 Address Comparisons and Data Blocks (Lines)
 Address Comparisons based on Tags

 Common Organizations
 Direct Mapped

 Simple but slowest

 Fully Associative
 Most Complex and Fastest

 Set Associative
 Close to Fully Associative Performance + Simplicity of Direct
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Agenda (Continued)

 Cache Control
 Update Policies

 Write Back, Write Through

 Replacement Policies
 Selecting Which “Block” to Replace
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The Domain of Caches

 Why Were Caches Created ?
 Performance, Performance, Performance……Any Questions ?

 Consider This….
 We want RISC Scalar CPU to Input 1 Instruction per Clock

 CPU Fetches Each Instruction From DRAM (Cheap but Dense Memory)

 but has to wait 40/.4 = 100 Clocks between Accesses Due to Cycle Time

– DRAM Slow
– Bus Slow (Cycle Times + Arbitration not Even Considered Here)
– CPU Pin Limited (Prevents Simultaneous Instruction Fetch)
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Achieving A Memory Hierarchy

 Objective:  Make System that:
 1:  Provides Bulk and Cost Close to Disk

 2:  Provides Performance of Registers/CPU
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Review: Who Cares About the Memory Hierarchy?
(Slide from David Patterson)
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60%/yr.
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7%/yr.
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“Moore’s Law”

 Processor Only Thus Far in Course:
 CPU cost/performance, ISA, Pipelined Execution

 CPU-DRAM Gap

 1980: no cache in µproc; 1995 2-level cache on chip
(1989 first Intel µproc with a cache on chip)
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Processor-Memory Performance Gap “Tax”
(Slide from David Patterson)

    Processor % Area %Transistors

(_cost) (_power)

 Alpha 21164 37% 77%

 StrongArm SA110 61% 94%

 Pentium Pro 64% 88%
 2 dies per package: Proc/I$/D$ + L2$

 Caches have no inherent value,
only try to close performance gap
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Why Caches Work

 Principle of Locality:
 Temporal:  If you use an instruction/data item in the near past, then you will

probably use it again in the near future.
 Loops
 Variable re-use

 Spatial:  If you use an instruction/data item, then you will probably use others
close in address space

 Sequential Instruction Execution
 Data Arrays

 Basic Operation:
 CPU Issues Address
 Cache Compares To Existing Addresses (Tag Compare)

 If hit, continue
 If miss, stop execution and pull in complete line

– Cache refill times can be considerable.  Worsens with multi-level caches.
We won’t consider refill times in our basic coverage today
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Big Picture Operation

 Cache is Based on SRAM (D-Flip Flops).
 Much Faster than DRAM

 Cache Memory is Limited
 Obviously, Map Multiple Locations From Main Memory into Cache

 Question:  How Do We Decide The Mapping ?
 Direct Mapped

 Fully Associative

 Set Associative

 Lets First Look At Cache Organization
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Direct Mapped Cache Organization

 Break Address Into 3 Parts
 Block Offset

 Index

 Tag:
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Sizing Analysis

 Direct Mapped Cache Sizing
 Given by Index x  Block Size (in Bytes)

 Total Size = 2#index_bits x 2 #block_offset_bits

 This Example = 23 x 22 = 25 = 32 bytes

 Note* Independent of Tag Size

– Does Cache Size Change for this Example for 32 bit Address ?
 How Many Blocks Mapped into Common Line ?

– Does this change for 32 bit Address ?
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Fully Associative Cache

 Tag Can Go Anywhere:  Better Utilization
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Set Associative

 2-Way Set Associative
 “Way-ness” :

 = # Storage Locations

 = # Comparisons
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2-Way Set Associative Cache (Better Representation)

 Sets Formation as Grouped Blocks

 N sets := N:1 Multiplexers

 Wayness = # Multiplexers

 Wayness = # Comparitors
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4-Way Set Associative

 4-Way Uses 4 Comparitors

 2 Sets (In this Example)

 4 Places to put a Block
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A Little Comparison Between Organizations

 Direct, Full, and Set Associative are all really the same
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Measuring Performance

How We Measure Cache Performance:

 Hit rate:  Percentage of Accesses Issued by CPU Found in Cache

 H usually pretty high; say 96 - 99%

 Average Access Time:  The Average, or Effective Access Time
Using a Cache

 Tacc = tcache x h + tmm(1-h)

 Performance is Very Sensitive to Miss Rate ( 1- Hit Rate)
 Consider ratio of 100:1 cycle time difference
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Performance Effects of Cache

 Assume Cache is 100x Faster Than Main Memory

clock cycles
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Cache Misses and Size

 Compulsary Misses:  Assumes an infinite size cache.  Compulary misses occur when a block is first accessed.
Also called “Cold Start” misses

 Capacity Misses:  If cache cannot contain all blocks (program/data) needed, then misses occur because
blocks are discarded and then later retrieved.

 Conflict:  Misses due to associativity constraints.  No Conflict misses for Fully Associative.  Some for set
associative and the most for direct mapped.

 Consider Graph for Fully Associative Cache (No Conflict Info in this Graph)
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Effects of Associativity

 Does Associativity Effect Hit Rate ?
 You bet…..

 Simple Thought Game…
 An Increase in Associativity Enables More Options on Where an

Instruction/Datum Can be Stored in Cache
 Will a Set Associative Cache Ever Perform Worse than A Direct Mapped

Cache ?

 Will a Fully Associative Cache Ever Perform Worse than a Set Associative
Cache ?

 Conflict Misses: Hit Rate Differences Between Levels of Associativity.
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Cache Size (KB)   
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   miss rate 1-way associative cache size X 
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Block Size (bytes)   
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Block Replacement

 When a miss occurs and all blocks (direct, set, full ?) are
occupied, which one do you replace ?
 Thought Experiment:  What would ideal replacement policy be ?

 Requires us to predict future

 Realistic Policies
 Random: Simply pick one

 Least Recently Used (LRU):  Relies on the past to predict the future.
Don’t replace a block that has recently been used, replace block that
has not been used for the longest time.

 First In, First Out (FIFO): Simpler version of LRU.

 LRU is probably the most common.   Best approximation we have to
ideal.  Check out data sheets for your Pentiums….
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What Happens on a Write ?

 Write Back:  Only Update the Cache, not Main Memory
 Pro’s

 Best Performer: All Accesses Occur At Cache Cycle Times

 Minimizes Updates to a Single Variable (summation etc.)

 Con’s
 Modest Increase in Complexity (A Dirty Bit)

 Must First “Flush” Back Dirty Line Before Replacement

 Inconsisent Memory State (Multiple Values in Cache and Main Memory Possible)

 Write Through: Update Through Cache and Into Main Memory
 Pro’s

 Keeps Cache and Main Memory Consistent

– Important for Multiprocessors ?
 Line Refills Simple and Fast,  No Need to Flush Stale Data

 Con’s

 Writes Occur at Main Memory Speed, not Cache
 How Often Do We Write ?


