
1

Extensible Processors for
MPSoC

David Andrews
Computer Engineering Group

University of Paderborn

dandrews@ittc.ku.edu

2

MPSoC Example Architecture

 Let’s Look at the Processing Resources…

3

MPSoC Processors

 How Many and What Type of Processors?
 Requirements From

 Performance
 Throughputs, Turnarounds

 Instruction Sets (Operations)
 Operations

– Arithmetic
– Data Transfer
– Special Custom

 Flexibility
 Programmability
 Re-use

 Cost
 Parts Cost
 Development Costs

 Supporting Development Environments
 Compilers, Debuggers, Run Time Systems

 Power/Size Constraints

 Always The Classic Tradeoff: Customization versus Specialization
 From : Cheap General Purpose Microprocessors
 Through : Semi Custom (Extensible) Microprocessors
 To: Fully Custom ASIC’s

4

Multiprocessor Implementations

5

Heterogeneity

6

Why Heterogenous Solutions ?

 Applications Requirements Dictate:

 General Purpose
 System Interface

 RTOS Host

 General System Processing

 Semi/Fully Custom
 Network and I/O Controllers

 Signal/Image Processing Data Paths

 Support Large Data Transfers

7

CPU Generalization/Customization Tradeoffs

8

MPSoC Heterogenous sysetm of IP’s

9

A Little Caution

 What We Are Considering Is Largely Acceleration of a
Portion of a Single Application.
 Programming Language Analysis

 Custom Processor Has 1 Program Counter
 Although Data Paths Will Be Custom, Still 1 execution stream

 Amdahls Law Applies

 Not Programming Model Acceleration (Yet)
 Operating System to “Bind” All Assets Together

 Programming Model to Delimit Independent Execution Streams

10

GP Processors

PROs:

 Good Scalability/Portability
 Software Easier to Develop/Expand/Port

 Easily Reprogrammable

 Economics
 Legacy Software Development/Debug Environments

 Cheap Components with Low NRE Costs

CONs:

 Low Performance
 Data Paths, Control Paths Generalized, Not Tuned to Anything

 Sequential, Limited ISA

11

Custom Circuits (ASIC’s)

PROs:
 High Performance

 Custom Data Paths, Control Paths Tailored to Your Application
 Tuned Clock Frequencies, Delays etc.

 RTL Design
 Low Level Descriptions in VHDL/Verilog
 Synthesis Tools Immature
 Verification Requires Long Cycles

CONs:
 Poor Scalability

 Custom Data Paths, Components Designed for Specific Application
Sizes.

 8 x 8 Image Filter Size Using Custom Tapped Delay Lines

 Economics
 Costly NRE
 Lack of Software Development/Debug Environments
 Life Cycles/Reuse Limited

12

Extensible Processor Alternatives

What we would Like is to merge best of both worlds

 General Purpose Microprocessors
 Reprogrammability: Reuse, Debug/Development

 Flexibility

 ASIC’s
 Performance Level of Customized Solutions

 Todays (Lectures) Answer: Extensible (Configurable) Processors
 Start With Familiar/Standard Computational Models.

 PC, SP, Register File, ALU’s, Decode Units
 Extend with Mix/Match of Custom Components

– Wider Data Paths
– Wider/More ALU’s
– Specialized Operations

 Reflect Extensions through Op_Codes

 Exploit Existing Compiler, Debug Environments

13

Key Questions for Extensible Processors

 What Target Characteristics of the Processor Can be
Configured and Extended
 Data Paths

 Registers

 Pipeline Stages

 Data Movement

 How Does System Engineer Capture Target Characteristics
 Design Tools

 Profiling

 Instruction Building

 What are Deliverables: Hardware and Software Components
 New Compiler/Linker

 Debuggers

 RTL Generation

14

Processor Configuration Criteria

 Configuration Mechanism Must Accelerate and Simplify the
Creation of Useful Characteristics
 Can’t Simply Be More Bureaucracy

 Cost - Performance Ratios Also a Consideration

 Usually Requires Significant Program Analysis
 By Hand
 Compiler Assisted

 Generated Processor Should Include:
 Complete Hardware Descriptions

 Synthesizable Verilog/VHDL Descriptions

 Complete Software Development Tools
 Compilers
 Debuggers
 Assemblers
 RTOS’s

 Verification Software
 Simulation Models
 Diagnostics
 Test Benchs/Support

15

Selected Range of Offerings

 Non-Architectural Processor Configuration
 Not reflected within the ISA

 Cache Sizes, DMA’s

 Fixed Menu Processor Architecture Configurations
 Preset Range of Features From Menu’s

 Hw/Sw tools configured in parallel (hopefully from 1 user interface)

 User-Modifiable Processor RTL
 Processor Has Hardware Interface for Hand Addition/Modification of

Instructions.
 Generally Precludes Software Support from Compiler/Simulator/RTOS
 MIPS M4K

 Instruction-Set Description Language
 Automated Processor-Generation Tool Starts from ISA and Builds Silicon (RTL

Descriptions) and Software Support (Compilers/Simulators)
 Tensilica

 Fully Automated
 Compilation/Synthesis Tools Analyze and Profile Applications and Generate

Custom Everything

16

Example: M4K Core (MIPS Technologies)

www.mips.com/content/PressRoom/TechLibrary/WhitePapers/multi_cup

17

Tensilica’s Configurable Core

18

Tensilica Automatic Processor Generation

19

Development Tool Flow

 Several Interesting Options
 Start With Unaltered C/C++ Code

 Profile/Analyze
 Automatically Generate Core

 Create Custom Instructions
 TIE a C/Verilog Language

 Both Create “Updated” Tools
 Compiler, Simulator, RTOS

20

Modifications

 Fusion
 Identifies Instructions that can be combined

Add R1,R2,R3

Sll R1, R1, ##4

Create: Add_sll R1, R2, R3, #4 /* 1 clock cycle instruction

 Vector/SIMD
 Best Bet for Parallelization Using this Method

 Attacks Loops: Unroll and Create New Wider Register File + ALU’s of
Depth 2, 4, 8

 VLIW: Called “Flix” (Flexible Length Instruction Xtensions)
 32 or 64 bit VLIW Instruction:

 Can be multicycle

21

Fusion Example

 Compiler Identifies Based on Dependencies and Frequency Counts (I.e. loops)

 sub,abs,add,extui can be combined into a single instruction

 474 gates in 1 cycle

22

Flix Example

 VLIW Packing of Instructions
 Dependency Analysis

 Long Instructions Issued In Sequence

 Can Contain Fusion, SIMD Instructions

23

TIE Language

 Compiler Identifies Some Parallelism and Automatically
Creates New Instructions/Architectures in “TIE”

 User Can Also Operate In TIE

 Tie: Tensilica Instruction Extension Language
 Allows The Creation of New Custom Hardware Through ISA
 State Declarations: Can Add State Registers and Register Files
 Instruction Encodings and Formats - Operation Descriptions: Can

Have Up to Six Source and Destination Operands:
 GP Registers
 Newly Defined Registers
 New States

 TIE Feeds Back New Instructions/Types to Preprocessor Within C
Compiler Chain

24

Example

Regfile LR 16 128 1

Operation add128 {out LR sr, in LR ss, in LR st} {assign sr = st + ss;}

Main() {

int i;

LR src1[256], src2[256], dest[256];

for (i=0; i< 256; i++) dest[i] = add128(src1[i],src2[i]);

}

#Entries Width

Processor Generator Creates new Compiler with new data type LR
-will also generate new ld/st operations for this type

25

Performance

26

Another Example: Chess/Checkers

27

Configuration Capabilities

28

Processor Description Langauge nML

29

Chess

